精品文档
分式方程综合应用题 2014.8
1(2014•梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天
2.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为
获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.
(1)求签字笔和笔记本的单价分别是多少元?
(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?
3..(2014•牡丹江)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
精品文档
精品文档
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案? 4..(2014•东营)为顺利通过“国家文明城市”验收,东营市拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.
(1)甲、乙两个工程队单独完成此项工程各需多少天?
(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
解答: 解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得
=
解得:x=15,
经检验,x=15是原分式方程的解, 2x=30
答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.
(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元; 方案二:由乙工程队单独完成需要2.5×30=75万元; 方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元. 所以选择甲工程队,既能按时完工,又能使工程费用最少.
5.(2014年山东烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?(用列方程的方法解答)
(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多? A,B两种型号车的进货和销售价格如下表: A型车 B型车 精品文档
精品文档 进货价格(元) 销售价格(元) 1100 今年的销售价格 1400 2000
分析: (1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值. 解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得
,解得:x=1600.经检验,x=1600是元方程的根.
答:今年A型车每辆售价1600元;
(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得 y=(1600﹣1100)a+(2000﹣1400)(60﹣a), y=﹣100a+36000.
∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a, ∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,
∴y随a的增大而减小.∴a=20时,y最大=34000元. ∴B型车的数量为:60﹣20=40辆.
∴当新进A型车20辆,B型车40辆时,这批车获利最大.
6.)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.
(1)第一批该款式T恤衫每件进价是多少元?
(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价) 考点: 分式方程的应用;一元一次不等式的应用. 分析: (1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程; (2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解. 解答: 解:(1)设第一批T恤衫每件进价是x元,由题意,得 =, 解得x=90, 经检验x=90是分式方程的解,符合题意. 答:第一批T恤衫每件的进价是90元; (2)设剩余的T恤衫每件售价y元. 精品文档
精品文档
由(1)知,第二批购进=50件. 由题意,得120×50×+y×50×﹣4950≥650, 解得y≥80. 答:剩余的T恤衫每件售价至少要80元. 7.(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天. ①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?
②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天? 解答: 解:①设乙工厂每天可加工生产x顶帐蓬,则甲工厂每天可加工生产1.5x顶帐蓬,根据题意得: ﹣=4, 解得:x=20, 经检验x=20是原方程的解, 则甲工厂每天可加工生产1.5×20=30(顶), 答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐蓬; ②设甲工厂加工生产y天,根据题意得: 3y+2.4×解得:y≥10, 则至少应安排甲工厂加工生产10天. 8. 甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项
≤60, 任务比乙队单独施工完成此项任务多用l0天。且甲队单独施工45天和乙队单独施工30天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天? 、
(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,
精品文档
精品文档
由甲队单独继续施工,为了不影响工程进度。甲队的工作效率提高到原来的2倍。要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
(2)设甲队再单独施工a天,由题意,得
3 30
+
2a 30
≥2×
3 20
,
解得:a≥3.
9.(2013•抚顺)2013年第十二届全国运动会将在辽宁召开,某市掀起了全民健身运动的热
潮.某体育用品商店预测某种品牌的运动鞋会畅销,就用4800元购进了一批这种运动鞋,上市后很快脱销,该商店又用10800元购进第二批这种运动鞋,所购数量是第一批购进数量的2倍,但每双鞋进价多用了20元.
(1)求该商店第二次购进这种运动鞋多少双?
(2)如果这两批运动鞋每双的售价相同,且全部售完后总利润率不低于20%,那么每双鞋售价至少是多少元? 考点: 分式方程的应用;一元一次不等式的应用 分析: (1)设该商场第一次购进这种运动鞋x双,则第二次购进数量为2x双,根据关键语句“每双进价多了20元”可得等量关系:第一次购进运动鞋的单价+20=第二次购进运动鞋的单价,根据等量关系列出方程,求出方程的解,再进行检验即可得出答案; (2)设每双售价是y元,根据数量关系:(总售价﹣总进价)÷总进价≥20%,列出不等式,解出不等式的解即可. 解答: 解(1)设该商场第一次购进这种运动鞋x双,由题意得: +20=, 解得:x=30 经检验,x=30是原方程的解,符合题意, 则第二次购进这种运动鞋是30×2=60(双); 答:该商场第二次购进这种运动鞋60双. 精品文档
精品文档
(2)设每双售价是y元,由题意得: ×100%≥21%, 解这个不等式,得y≥208, 答:每双运动鞋的售价至少是208元. 点评: 本题考查分式方程的应用和一元一次不等式的应用,读懂题意,找到关键描述语,找到合适的等量关系或不等关系是解决问题的关键.用到的公式是:利润率=
×100%. 10(2013•烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购
进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问: (1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
考点: 分式方程的应用. 分析: (1)先设苹果进价为每千克x元,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,求出x的值,再进行检验即可求出答案; (2)根据(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利2100元相比较即可. 解答: 解:(1)设苹果进价为每千克x元,根据题意得: 400x+10%x(解得:x=5, 经检验x=5是原方程的解, 答:苹果进价为每千克5元. ﹣400)=2100, 精品文档
精品文档
(2)由(1)得,每个超市苹果总量为:大、小苹果售价分别为10元和5.5元, 则乙超市获利600×(∵甲超市获利2100元, ∴甲超市销售方式更合算. ﹣5)=1650(元), =600(千克), 11.(2013•昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔
记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.
(1)求打折前每本笔记本的售价是多少元?
(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案? 考点: 分式方程的应用;一元一次不等式组的应用. 专题: 应用题. 分析: (1)设打折前售价为x,则打折后售价为0.9x,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方程,解出即可; (2)设购买笔记本y件,则购买笔袋(90﹣y)件,根据购买总金额不低于360元,且不超过365元,可得出不等式组,解出即可. 解答: 解:(1)设打折前售价为x,则打折后售价为0.9x, 由题意得,+10=, 解得:x=4, 经检验得:x=4是原方程的根, 答:打折前每本笔记本的售价为4元. (2)设购买笔记本y件,则购买笔袋(90﹣y)件, 由题意得,360≤4×0.9×y+6×0.9×(90﹣y)≤365, 解得:67≤y≤70, ∵x为正整数, ∴x可取68,69,70, 故有三种购买方案: 方案一:购买笔记本68本,购买笔袋22个; 方案二:购买笔记本69本,购买笔袋21个; 方案三:购买笔记本70本,购买笔袋20个; 12.
精品文档