Implicationsfordark-matterdirectdetectionexperiments
AminaHelmi,SimonD.M.WhiteandVolkerSpringel∗
Max-Planck-Institutf¨urAstrophysik,Karl-Schwarzschild-Str.1,85740GarchingbeiM¨unchen,Germany
(Dated:February5,2008)
Westudythephase-spacestructureofadark-matterhaloformedinahighresolutionsimulationofaΛCDMcosmology.Ourgoalistoquantifyhowmuchsubstructureisleftoverfromtheinho-mogeneousgrowthofthehalo,andhowitmayaffectthesignalinexperimentsaimedatdetectingthedarkmatterparticlesdirectly.Ifwefocusontheequivalentof“Solarvicinity”,wefindthatthedark-matterissmoothlydistributedinspace.Theprobabilityofdetectingparticlesboundwithindenselumpsofindividualmasslessthan107M⊙h−1issmall,lessthan10−2.ThevelocityellipsoidintheSolarneighbourhooddeviatesonlyslightlyfromamultivariateGaussian,andcanbethoughtofasasuperpositionofthousandsofkinematicallycoldstreams.Themotionsofthemostenergeticparticlesare,however,stronglyclumpedandhighlyanisotropic.WeconcludethatexperimentsmaysafelyassumeasmoothmultivariateGaussiandistributiontorepresentthekinematicsofdark-matterparticlesintheSolarneighbourhood.ExperimentssensitivetothedirectionofmotionoftheincidentparticlescouldexploittheexpectedanisotropytolearnabouttherecentmerginghistoryofourGalaxy.
PACSnumbers:95.35.+d,95.30.Cq,95.75.Pq,98.35.Gi,98.35.Df,98.35.Mp
arXiv:astro-ph/02012v2 23 Jul 2002I.INTRODUCTION
Oneofthemostfundamentalopenquestionsincos-mologyandparticlephysicstodayiswhatisthenatureofdark-matter.Thefirstindicationsofitsexistencecameinthe1930s,withthemeasurementsofthevelocitiesofgalaxiesinclusters.Theclustermassrequiredtograv-itationallybindthegalaxieswasfoundtoberoughlyanorderofmagnitudelargerthanthesumofthelu-minousmassesoftheindividualgalaxies[1,2].Inthe1970s,observationsoftherotationcurvesofspiralgalax-ies(Vc(r)=
galaxies,whichthenmergeandgiverisetothelargerscalestructuresweobservetoday.Thusstructurefor-mationoccursina“bottom-up”fashion[8,9].Thishierarchicalparadigmhasallowedastronomerstomakeverydefinitepredictionsforthepropertiesofgalaxiesto-dayandabouttheirevolutionfromhighredshift.DirectcomparisonstoobservationshaveshownthatthismodelisquitesuccessfulinreproducingboththelocalandthedistantUniverse.
Thecrucialtestofthisparadigmundoubtedlycon-sistsinthedeterminationofthenatureofdark-matterthroughdirectdetectionexperiments.Amongthemostpromisingcandidatesfromtheparticlephysicsperspec-tiveareaxionsandneutralinos.Axionshavebeenintro-ducedtosolvethestrong-CP(ChargeconjugationandParity)violations[10].Theycanbedetectedthroughtheirconversiontophotonsinthepresenceofastrongmagneticfield(e.g.[11,12]).Neutralinosarethelight-estsupersymmetricparticles,andmaybeconsideredasaparticularformofweaklyinteractingmassiveparticles(WIMPs).Themostimportantdirectdetectionpro-cessofneutralinosisthroughelasticscatteringonnu-clei.Theideaistodeterminethecountrateoverrecoilenergyaboveagiven(detector)backgroundlevel.Theexperimentalsituationhasbeenimprovingrapidlyoverthepastyears,withlarge-scalecollaborationssuchasDAMA,EdelweissandCDMS[13,14,15]startingtoprobeinterestingregionsofparameterspace(foranex-tensivediscussionsee[16]).Themainproblemcurrentlyliesinthehighlevelofbackgroundnoise,eitherfromambientradioactivityorcosmic-rayinducedactivity.In-formationonthedirectionoftherecoilscouldpotentiallyalsobeusefulandyieldalargeimprovementinsensitivity[17].
Inalltheseexperiments,thecountratestronglyde-pendsonthevelocitydistributionoftheincidentparti-
∗Electronic
address:ahelmi,swhite,volker@mpa-garching.mpg.decles,andamodulationeffectduetotheorbitalmotionoftheEartharoundtheSunisexpected[18].Inmostcases,anisotropicMaxwelliandistributionhasbeenas-sumed(e.g.[19,20]),althoughthereareotherexamplesintherecentliterature,discussingmultivariateGaussiandistributions[21,22,23].Attemptsatunderstandingtheeffectofsubstructureinthevelocitydistributionofdark-matterparticleshavealsobeenmade[24,25,26].ThissubstructurewouldhaveitsorigininthedifferentmergerandaccretioneventstheGalaxyshouldhaveexperiencedoveritslifetime[27].
Theprogressivebuildupofdarkhalosthroughmerg-ersandaccretionofsmallersubunitsimpliesthatthelatterwillleavesubstructureinthephase-spaceofthefinalobject.Thisisbecausethephase-spacevolumeofthefinalobjectismuchlargerthanthatinitiallyavailableforeachoneoftheobjectsindependently.Forexample,forasmallsatellitegalaxytheinitialphase-spacevolumeoccupiedbyitsparticlesisproportionalto(RsatVisthesizeofthesatellite,andVcsat)3,whereRsatvelocity.Thevolumeavailabletothesatellitecsatitscircularparticlesafterthemergingisdeterminedbytheirorbit,andisafactor(Rgal/Rsat)3×(Vcgal/Vcsat)3larger,whereRgalisthesizeofthefinalobjectandVinthecaseofamajorcgalitscircularvelocity.Notethatevenmerger,wherethemassisdoubled,thephase-spacevolumeavailableisal-ready4timeslarger[45].Thekeyquestioniswhetherthissubstructurewillbedirectlyorindirectlyobserv-able.Forexample,ifthereisaboundsatellitegoingthroughtheSolarneighbourhoodatthepresentday,itwilldominatethefluxofdark-matterparticlesonEarth.Theenergyspectrumoftheseparticleswillbestronglypeakedaroundtheorbitalenergyoftheclump,perhapsgivingasignalsimilartoadeltafunction.AsweshallshowinSec.IIIB2thefractionofmassinsatelliteswhichcouldhavesurvivedthetidal2fieldoftheGalaxybythepresentdayislessthan10−oftotalmassoftheGalaxy,implyingthatsuchascenarioisrelativelyunlikely.
MorerealisticistoassumethatthesatellitehalosthatcontributewithmasstotheSolarneighbourhoodwillbecompletelydisrupted.Theparticlesfreedfromsuchsatelliteswilltendtofollowtheinitialorbitoftheirpro-genitor,andeventuallywillfillavolumecomparabletothesizeoftheorbit.Becauseoftheconservationofphase-spacedensity(Liouville’stheorem),thisimpliesthatlocallytheyshouldhaveverysimilarvelocities[46].ThusonemayexpecttoseestreamsofparticlesgoingthroughtheSolarneighbourhood,whichhadtheirorigininthedifferentmergingevents.Suchstreamshaveal-readybeenobservedinthemotionsofnearbyhalostarsandintheouterregionsoftheGalactichalo[28,29].Streamsmanifestthemselvesaspeaksinthevelocitydis-tributionfunction.Clearlyitisimportanttodetermineforthedark-matterparticlesinthevicinityoftheSunwhetherthisdistributionfunctionwillbedominatedbyafewofthesepeaks,orwhethertheirnumberissolarge,thatitwillbeclosetoGaussian.
Thebestwaytounderstandtheexpectedproper-2
tiesoftheGalactichalointheSolarneighbourhoodisthroughhigh-resolutionsimulationsstartingfromappro-priatecosmologicalinitialconditions.Analyticmodellingcanprovideinsightsintotheprocessesthatdrivethebuild-upofstructuresuchasphase-mixing,ortidalstrip-ping.Neverthelessitneedstobecomplementedbycos-mologicalsimulations,thatprovidethemassspectrumoftheaccretedhalos,theirorbitalparameters,theirchar-acteristicmergingtimes,andthedetailedmixingofthematerialtheydeposit.Thehighlynon-linearcharacterofthehierarchicalbuildupofagalaxyliketheMilkyWay,forcesustoresorttonumericalsimulationstomakere-alisticpredictionsforitsproperties.Veryhighresolutionsimulationsarerequiredtobeabletoresolvethesub-structuresleftoverfrommergingevents,sincetheirden-sitycontrasts3areexpectedtofaderatherquicklywithtime(astforsufficientlylongtimescales[27]).
Themaingoalofthepresentpaperistounderstandthephase-spacestructureofadark-matterhalo.Wewishtoquantifytheexpectedamountofsubstructureandun-derstanditseffectondirectdark-matterdetectionexper-iments.Particularemphasiswillbeputondeterminingthepropertiesofthedark-matterdistributionintheSo-larneighbourhood:itsmassgrowthhistory,thespatialdistributionandthekinematicsofparticlesinthisregionoftheGalactichalo.Weaddresstheseissuesbyscalingdownahigh-resolutionsimulationoftheformationofaclusterofgalaxiesinaΛCDMcosmologytoagalacticsizehalo[30].
II.METHODOLOGY
Thesimulationsweanalyseherewerecarriedoutus-ingaparalleltree-code[31]ontheCrayT3EattheGarchingComputingCentreoftheMaxPlanckSociety.Thesesimulationsweregeneratedbyzoominginandre-simulatingwithhigherresolutionaparticularclusteranditssurroundingsformedinacosmologicalsimulation(asin[32]).TheΛCDMcosmologicalsimulationhasparam-etersΩ0=0.3,ΩΛ=0.7,h=0.7andσ8=0.9.Theclusterselectedisthesecondmostmassiveclusterinthesimulationandhasavirialmassof8.4×1014h−1M⊙.Theparticlesthatendupinthefinalclusterofthecos-mologicalsimulationandinitsimmediatesurroundings(definedbyacomovingsphereof70h−1Mpcradius)weretracedbacktotheirLagrangianregionintheinitialcon-ditionsforre-simulation.Theinitialmassdistributionbetween21and70h−1Mpcwasrepresentedby3×106particles.Intheinnerregion,wheretheoriginalsimula-tionhad2.2×105particles,newinitialconditionswerecreatedfor4.5×105,2×106,1.3×107and6.6×107particles,andsmallscalepowerwasalsoaddedontothisvolume.Theoriginalforcesofteningwasalsodecreasedtoobtainbetterspatialresolution.Allsimulationswererunfromveryhighredshiftuntilz=0.
Wecanscalethesimulatedclustertoa“MilkyWay”halobyscalingthecircularvelocitysothatatitsmax-
imumitisequalto220kms−1.Thescalingobtainedinthiscaseisγ=vcl
c/vMWfactor
c∼9.18.Thevirialradiusofoursimulated“MilkyWay”dark-matterhaloisrvir=228kpc.Thejustificationforthissimplescalingreliesbothontheoreticalandnumericalresults[34,35,36].Forexample,high-resolutionnumericalsim-ulationshaveshownthattheoverallpropertiesofgalax-iesandclustersofgalaxies,suchastheirdensityprofiles,numberofsatellitesandformationpathshaveoverlap-pingstatisticaldistributionsforthetwotypesofobjects.
III.
THEPHASE-SPACESTRUCTUREOFTHE
GALAXY
Inthissectionweshallfocusonthepropertiesofthedark-matterdistribution,withparticularemphasisonthevicinityofthe“Sun”.WeareinterestedinwhichhaloscontributemattertothisregionoftheGalactichalo,whatweretheirinitialproperties,andwhenweretheyaccreted.Wealsoinvestigatewhatisthepresent-dayspatialandvelocitydistributionofmaterialinthe“Solarneighbourhood”,andhowthedirectdetectionex-perimentsmaybefinetunedtodeterminethenatureofdark-matter.
AseriesofsnapshotsofthegrowthoftheclusterareshowninFigure1.Thesimulationsstartfromverysmalldensityfluctuations,assumedtohavebeenproduceddur-ingtheinflationaryexpansionoftheUniverse[33].Mat-teristhenaccretedontotheseinitialdensityfluctuationsthroughtheactionofgravity.AdarkhaloformswhenanoverdenseregiondecouplesfromtheexpandingUni-verse,turnsaroundandcollapsesontoitself.Thispro-cessrepeatsitselfonprogressivelylargerscales,andbighalosareformedthroughthemergingandaccretionofsmallerunitsasshowninFig.1.Thesesubunitswillor-bitthelargerhaloassatellitesforsometime,asshowninthebottompanelsinFig.1,untiltheyarecompletelydisrupted.Wewillfrequentlyrefertothemassubhalos.Theprogressivegrowthofmassoftheclusterisschemat-icallyshowninFigure2asa“mergertree”.
A.Massgrowthhistory1.
TheGalaxy
Letusfirststudythepropertiesofthedark-matterdis-tributionasafunctionofdistancefromthegalaxycentre.Weareinterestedindeterminingwhattypeofhalostyp-icallycontributetodifferentregionsofthegalaxyandtheirtimeofaccretion.Thisisrelevantbecausehalosaccretedatlatetimeswillbegenerallylessmixed,andcouldthusproducemoremassivestreamsdominatingthevelocitydistributionofparticlesneartheSun.WealsowanttoestimatetheprobabilitythatsuchhaloscouldcontributetotheSolarneighbourhoodmassbudget.
3
Weproceedbydividingthehaloinsixsphericalshellsaroundthegalaxycentre.Theseshellsarelocatedat:r<10kpc,10≤r<25kpc,25≤r<50kpc,50≤r<75kpc,75≤r<100kpcand100≤r<200kpc.Foreachparticleinashell,wedeterminewhenitwasaccretedbythemainprogenitorofthegalaxystart-ingfromredshiftz=2.4or11Gyrago.Particlesmaycomefromaccretedsatellitesorfromthe“field”.“Field”particlesarethosewhichdidnotbelongtoanyboundstructurebeforebecomingpartofthegalaxy.Becauseofourresolutionlimit,fieldparticlesmayalsocomefromhaloswithlessthan10particles,i.e.withmasssmallerthan8.66×105M⊙.Theaccretiontimeforparticlesinasubhaloisdefinedtobethetimeofaccretionofthissub-halo.Inpractice,wesaythatasubhaloHsubidentifiedatredshiftzhasbeenaccretedbythemainprogenitorHmainatredshiftz′,ifatleasthalfoftheparticlesofHsubarecontainedwithinHmainatz′,aswellasthemostboundparticleofHsub.Foraparticlefromthefield,thetimeofaccretionissimplydefinedastheearli-esttimeatwhichthisparticlehasbecomeamemberofthemainprogenitorofthegalaxy,asdeterminedbyourFOFalgorithm.
InFigure3weshowthefractionofmassaccreted(nor-malisedtothepresentmass)foreachshellasafunctionoftheinitialmassoftheaccretedsatelliteandforthreedifferentredshiftbins.Wedividetheanalysisintothemassalreadypresentatredshiftz=2.4(shownindarkgrey);thataccretedbetweenz=2.4andz=0.83(lightgrey);andbetweenz=0.83andthepresentday(black).ThefirstpanelofFigure3showsthattheforma-tiontimeoftheinnergalaxyisstronglybiasedtowardshighredshifts,withmorethan60%ofthemassalreadypresentatz=2.4.Wealsonotethatlateaccretiondoesnotplayanyroleinbuildinguptheinnergalaxy.Sub-haloswithmassessmallerthan107M⊙accretedatlatetimesdonotmakeupmorethan10−3ofthetotalmassintheinnermostshell.Thishasimplicationsfordark-matterdetectionexperiments,sinceitimpliesthatre-centlyaccretedtinysubhaloswithveryhighphase-spacedensitydonotcontributeenoughtotheSolarneighbour-hoodtohaveasignificanteffectontheexpectedsignal,incontrasttothesuggestionin[37].TheonlywaysuchsmallsubhaloscouldmakeittothevicinityoftheSunwouldbebybeingaccretedfirstbyalargehalo,whichatsomelaterredshifthasamajormergerwiththemainprogenitoroftheGalaxy.Wewillquantifyhowlikelythismaybeinthenextsection.
Figure3alsoshowsthatsmallaccretedsubhalostendtodepositmostoftheirmassatlargedistances.Intheseouterregions,thecontributionofheavysubhalosisofthesameorderofmagnitudeasthatfromthesmallersatel-lites.Thedifferenceinthefinaldebrisdistributionfrommassivesubhalosandfromlighteronesisduetodynam-icalfriction;verymassivesatellitescansinktothecentreofthegalaxyinshorttimescales,whichenablesthemtodepositagoodfractionoftheirmassinthecentralre-gions.Alargefraction(about20%)ofthemassinthe
4
FIG.1:Snapshotsofthegrowthofthedark-matterhaloinoursimulation.Eachpanelshowstheprojectedmassdensityinaboxofsidelength5.0Mpc/hintheoriginalclusterunits,whichcorrespondto778kpcinthescaledunitsusedthroughoutthepaper.Thepanelsarecentredonthemainprogenitorofthedark-matterhaloatthattime.Thefirstpanelcorrespondsto12.7Gyrago,andthelastpaneltothepresenttime.Notehowthehalogrowsthroughthemergingandaccretionofsmallerunits.
emitTodayFIG.2:Schematicrepresentationofa“mergertree”showingthegrowthofahalointime.Timeincreasesfromtoptobottom,andthewidthsofthebranchesareproportionaltothemassesoftheprogenitorhalos(basedon[34]).
outskirtscomesfromfieldparticles(asshowninthelastpanelofFig.3),stronglycontrastingwiththe0.7%seenfortheinnermostshell.
Finallyweremarkthatwhereastheformationofthein-nergalaxyisstronglyskewedtohighredshifts,theouterregionsgrowmuchmoregraduallyintime,withaccretionstillbeingimportantatlatetimes.
2.TheSolarneighbourhood
Wenowfocusonthe“Solarneighbourhood”,andanal-ysetheregion:7kpc 5 FIG.3:Thepanelsshowtheaccretedmassfraction(nor-malisedtothepresent-daymass)asafunctionoftheinitialmassofthesatellitehaloforsphericalshellsaroundthegalaxycentre.Thedifferentcolourscorrespondtothefractionofmassaccretedatdifferentredshifts.Darkgreycorrespondstothemassalreadyinplaceatz=2.4;lightgreytomassaccretedbetweenz=2.4andz=0.83;andblacktothataccretedbetweenz=0.83andthepresentday. morethanabout10−3ofthetotalpresentnumberofparticlesneartheSun.Theinfluenceofstreamsfromsuchrecentlyaccretedmaterialonthevelocitydistribu-tionfunctionneartheSunwillthusberelativelysmall,andmaydominateonlythehighenergytailofthedis-tributionfunction.ThelowerinFigure4showsthegrowth(Fm(t)=tpanelofmass0fm(t′ )dt′)asafunctionoftime.Weseethatmorethan50%ofthemassthatendsupinthe“Solarneighbourhood”todaywasalreadyinplace11Gyrago,andabout90%10Gyrago.Ofcourse,thisdependsonthespecificmergerhistoryofthishalo,sincethelargeincreaseofmassobservedatt=4Gyrisduetoamajormergertakingplaceatthetime.However,wealsonoticethataftert=7Gyr,thereisalmostnoincreaseofmassinthevicinityofthe“Sun”.Thelargecontrastwiththegradualmassgrowthofthehaloasawholecanbeclearlyperceivedfromthisfigure. B. SpatialdistributionintheSolarneighbourhood Oneofthecriticalissuesinunderstandingtheoutcomeofthevariousdark-matterexperimentsconsistsinchar-acterisingtheexpectedsignal.Asdiscussedintheintro-duction,offundamentalimportanceistoknowwhetherthedistributionofparticlesinthevicinityoftheSunissmoothormightbedominatedbyajustafewstreams FIG.4:Filledcirclesinthetoppanelshowthegrowthofmassinthe“Solarneighbourhood”normalisedtothemasspresentatz=0.Opencirclescorrespondtothegrowthofmassofthewholegalaxyhalo.Thebottompanelshowstothecumulativegrowthofmass.Notethat85%ofthemassintheSolarneighbourhoodwasalreadyinplace10Gyrago.Forthewholegalaxyhalo(dashedcurve),thisdidnothappenuntil6Gyrago. orevenboundlumps(e.g.[37]).Belowweshalldescribethevelocitydistributionofparticlesthatendupinthisregionofthegalaxyhalo.Herewefocusontheirspatialproperties. InFigure5weplotthepositionsofallparticlesinsideacubicvolumeof2kpconaside,located8kpcfromthe“MilkyWay”centre,whichweassumeisthedistancebetweentheSunandtheGalacticcentre.Becausethedarkhaloistriaxial,althoughalmostprolate(theaxesratiosareI1:I2:I3=0.65:0.71:1),weassumetheGalacticdisktobeperpendiculartothemajoraxisofthehalo.Thespatialdistributionofparticlesinsidethisrepresentativevolumeisextremelysmooth,asshowninFigure5.Thisismostlyduetothefactthatthematerialthatendsupintheinnergalaxymostlycomesfromafewverymassivehalos.Theveryshortdynamicaltimescalesinthisregionofthegalaxyarealsoresponsiblefortheveryrapidandefficientmixing,afterwhichthereremainsverylittleornospatialinformationontheirorigin. 1. ThepropertiesofthehalosthatcontributetotheSolar neighbourhood TodeterminethecharacteristicsofthehalosthathavecontributedmattertotheSolarneighbourhood,wefo-cusonthesphericalshell:7kpc FIG.5:Thetoppanelsshowthespatialdistributionofpar-ticlesinsidea2kpconasidevolumelocatedat8kpcfromthegalaxycentre,i.e.thisvolumeiscentredonthe“Sun”.Thereare474particlesinthisbox.Thebottompanelshowstheirdistributiononthesky. Sec.IIIA2,weidentifytheoriginoftheparticlesthatarelocatedinthisshellatthepresenttime.Wegrouptheparentsatellitesaccordingtotheirinitialmassinlog-arithmically.5spacedbinsofwidthdlogM=0.5startingfrom105M⊙to1012M⊙.Weestimatethecontributionfromhalosidentifiedatthreedifferentredshifts.Eithersuchhalosaredirectlyaccretedbythegalaxy,ortheyareaccretedbyanothermoremassivesubhalo,whicheven-tuallymergeswiththegalaxy. IntheleftpanelofFigure6weshowthecontributionofmattertothesphericalshellnormalisedtothepresentmassintheshell.Thusweseethatalargefractionofthemassinthisshellcomesfromthemostmassivehalosidentifiedatz=2.4,andverylittlefromfieldparticles(aswasalsoshowninFigure3).Forhigherredshiftsthelargestcontributiontendstocomefromsmallersatel-lites,whichisjustaconsequenceofthefactthattheheaviesthaloshavenotyetcollapsedattheseredshifts.Forsufficientlyhighredshift,thefieldparticles(i.e.fromunresolvedhalos)arethelargestcontributortothemasspresenttodayintheSolarneighbourhood. Justafewindividualhaloscontributetothelargestmassbins.However,forthesmallmassbins,thenumberofhaloscontributingwithinagivenbinactuallyincreasesdramatically,asshownintherightpanelofFigure6.Thelargefractionofthemassinthesphericalshell7kpc FIG.6:Theleftpanelshowsthefractionofmassinashellaroundthe“solar”radiuscomingfromhalosidentifiedatthreedifferentredshifts,normalisedtothepresentmassintheshell.Thefirstbinshowsthecontributionoffieldparticlesatthedifferentredshifts,whichendupinthe“Solarneighbourhood”.Byz=10.4notmanymassivehaloshaveyetcollapsed,andalmostallparticlescomefromthefield.However,byz=2.4,mostofthesefieldparticlesarefoundinhalos.ThelargestcontributiontomassinthevicinityoftheSuncomesfromhalosheavierthan1010M⊙.Therightpanelshowsthenumberofcontributinghalosinthedifferentmassbins. 2. ArethereanyboundsubhalosintheSolar neighbourhood? TherehavebeenrecentsuggestionsintheliteraturethattherecouldbeapopulationofverytinysubhalosorbitingintheSolarneighbourhood[37].Thesesubhaloswhichcollapsedatveryhighredshift,mighthavesuffi-cientlylargedensitiestosurvivealmostintactuntilthepresentday.Ifthispicturewerecorrect,theirpresencewouldproduceasignalondark-matterdetectorsthatwouldbeverydifferentfromthatofaGaussiandistribu-tioncomingfromasmoothhalo. Figure6showsthatthecontributionofmassfromha-losof105.5−106M⊙isnotnegligible,rangingfrom0.9%forhalosidentifiedatz=2.4to4%forthoseidentifiedatz=10.4.However,noneofthesehaloshasmanagedtosurviveboundinoursimulations,andsothemasstheyhavecontributedisinasmoothcomponentatthepresenttime. Howeverwealsoneedtoquantifytheprobabilitythatsomeofthemassactuallycomesfromboundsubhalosbelowourresolutionlimit.Totacklethisproblemweneedtoestimatethefractionofthemassinsuchsubhaloswhichremainedbounduntilthepresentdaywithrespecttothetotalmassofthegalaxy.Weshalldosousingallsubhalosorbitingwithinthevirialradiusofthegalaxytoday.Thesesubhalosaremostlyfoundintheoutskirtsofthegalaxy,wheretheirsurvivaltimesarelongerduetothesmallergalactictidalforces. ThesubhalomassfunctiondN/dMgivesthenumber ofsatellitesofthegalaxyhalowithmassin[M,M+dM].WithasophisticatedsubhalofinderitispossibletodeterminedN/dMforoursimulatedhaloatthepresenttime[30].Figure7showsthatthenumberofsubhalosinagivenmassbincanbewellfitbyapowerlaw: dNM M⊙ dM′ Thus MT( M′dM′. M 107M⊙h−1 0.27 .(3) Thusforexample,forthewholegalaxyhalothefractionofmassinboundsatellitessmallerthan107M⊙h−1at FIG.7:DifferentialsatellitemassfunctionM−1 hostdN/dMatredshiftz=0normalisedtothemassofthehosthalo.Thesolidcirclescorrespondtothewholepopulationofsatel-lites,whiletheasterisksonlytothoselocatedintheinner30kpc.InthelattercaseMhostisthemasswithinthisspher-icalregion.ThestraightlinecorrespondstologdN/dM=a+blogM,showingthatthedifferentialmassfunctionisverywellfitbyapowerlaw. thepresenttimeis4.4×10−2 .Thisoverestimatesthefractionofmassinsubhalosorbitingtheinnergalaxy,sincethespatialdistributionofsubhalosisskewedto-wardslargedistancesfromthegalaxycentre,wheretidalforcesareweaker.Forexample,ifweestimatep( InFigure8weplotthevelocitiesofparticlesinsideacubicvolumeof2kpconaside,locatedat8kpcfromthe“MilkyWay”centre.(ThesamevolumeasinFigure5.)Weidentifywithdifferentcoloursandsymbolsparticlesthatbelongedtothesamehaloatz=2.4.Atthisred-shift,whichcorrespondsto11Gyrago,wefind252003haloswithatleast10particlesinoursimulation.Intheboxshowninthisfigure,thereare474particleswhichcomefrom39differenthalos;only3contributewithmorethantenparticles.Thesethreehaloscomprisethemainprogenitorofthegalaxy(i.e.thetrunkinFigure2)andthetwomostmassivehalosthatmergedwiththegalaxy 8 (seeFigure4.Wedonotexpectallparticlesofthesamecolourtobeclusteredinasinglemassivestream,sinceeachindividualhaloispredictedtohavegivenrisetomanystreamsintheSolarneighbourhood[27,41].Forexample,thesixteenparticlesoriginatinginthethirdmostmassivehalo(3%oftheparticlesinthisvolume)aredistributedintendifferentstreams.Therefore,itisnotsurprisingthatitisdifficulttodistinguishstreamsinthisfigure.Thetotalnumberofparticlesinsidethisboxistoosmalltopopulateeachexpectedstreamwithmorethanoneortwoparticles. 1.Thevelocitydistributionfunction Turningtoalargervolumeof4kpconaside,allowsustoincreasethenumberofparticlesbyroughlyafactorof8.InFigure9weplotthevelocitydistributionfunctioninsuchaboxinthevicinityofthe“Sun”.Theleftandrightpanelsshowthedifferentialandcumulativevelocitydistributions,respectively.Wealsoshowhowthesedis-tributionscomparetoamultivariateGaussianwiththesamevelocityellipsoidasthedata.Althoughslightdif-ferencesarevisible,itishardtodistinguishthetwodis-tributionsfromoneanotherwithoutmakingadetailedstatisticalcomparison. 2.Thefastestmovingparticles InFigure10weshowthevelocitiesofparticleslocatedinthesame4kpconasideboxofFig.9.Wealsonoteherethattheirvelocitydistributionisrelativelysmooth.However,ifwefocusonthehighestenergyparticlesthisseemsnolongertobethecase,asshownbytheparticleshighlightedingrey.The1%fastestmovingparticlesarestronglyclumped.Mostofthissignalcomesfromahaloofmass1.94×1010M⊙thatmergedwiththegalaxyatz∼1.Figure11showsthedirectionsofmotionofallparticlesinthebox,whereweagainhighlightthefastestmovingones.Theirdistributionisclearlyanisotropic. 3.Thevelocitycorrelationfunction ToquantifythedeviationsfromasmoothGaussiandistributionduetothevelocitysubstructurepresentinavolumeintheSolarneighbourhood,wecomputethecorrelationfunctioninvelocityspace.Wedefinethe(av-eraged)velocitycorrelationfunctionξas ξ= DD 9 FIG.8:Principalaxesprojectionsofthevelocitiesofparticleslocatedinaboxof2kpconasideonthe“Solar”circle,whereallquantitieshavebeenscaledtothe“MilkyWayhalo”asdescribedinthetext.Thereare474particlesinthisbox.Thedifferentcoloursandsymbolsareusedheretoindicateparticlesoriginatinginthesamehaloidentified11Gyrago.Opencirclescorrespondtoparticlesfromhaloswhichdonotcontributesubstantiallytothisvolume.Blackfilledcirclesareparticlesfromthemainprogenitoridentifiedatthisredshift(226particles,i.e.47%).Opentrianglescorrespondto“field”particles,i.e.notassociatedtoanyhalo11Gyrago(42particles,i.e.9%).Thesquares(129particles,i.e.27%)correspondtothesecondmostmassivehaloidentifiedatthistime,whichmergedwiththegalaxyabout10Gyrago.Thelightgreycircles(16particles,3%)areforthethirdmostmassivehalo,whichmergedwiththegalaxyabout7Gyrago.TheseeventsareclearlyvisibleinFigure4,ashavingcontributedmostofthemassinthe“Solarneighbourhood”inthehistoryofthegalaxy. value,i.e.DD= pairsofparticlesi,jwith|vi−vj|<∆. (5) RRisdefinedanalogouslyforthesamenumberofran-dompoints.Weestimatetheerrorinξas ∆ξ= 1+ξ .DD (6) WecomparethemotionsofparticleslocatedintheboxofFigures9,10and11withthoseexpectedfromasmoothGaussiandistribution.WegenerateNreal=10differentMonteCarlosimulationswiththesamevelocitydispersiontensorandnumberofpointsasobservedinthisboxlocatedinthevicinityoftheSun.WecomputeξasinEq.(4),with RR= Nreal i=1 RRi FIG.9:Forparticleslocatedinaboxof4kpconasideatthe“Solar”radius,weplotthedifferential(left)andthecu-mulative(right)velocitydistributions(solidhistograms).ThedottedhistogramscorrespondtotheexpecteddistributionforamultivariateGaussianwiththesamevelocityellipsoidandnumberofpointsasthedata.ThemaindifferencesarethattheactualdistributionofvelocitiesappearstobebroaderandwithasharpercutoffthantheGaussian,anditisslightlylesspeaked. 10 FIG.10:PrincipalaxesprojectionsofthevelocitiesofparticleslocatedinthesameboxofFig.9.Ofthe4362particlespresentinthisvolume,wehighlightedthe1%fastest.Thevelocitydispersionsalongtheprincipalaxesareσ1=111.2kms−1,σ2=120.1kms−1,andσ3=141.4kms−1.Thelumpwithv1∼−185kms−1,v2∼−140kms−1andv3∼−370kms−1correspondstoahaloof1.94×1010M⊙identifiedatz=2.4,andaccretedatz=1,or8.2Gyrago. FIG.11:ThisplotshowsthedirectionsofmotionofthesameparticlesdiscussedinFigs.9and10.Wehighlightingreythe1%fastestmovingparticles.Thepositionofaparticleintheplotisgivenbythesphericalangularcoordinatesofitsvelocityvector,e.g.v1=vcosφcosθ,whereθisthelatitudeandφthelongitude. 10%fastestmovingparticles,thedeviationisaslargeasthatobservedforthefulldataset,andwouldthusonlybevisiblewithalargenumberofdetectionevents,i.e.ofatleastafewthousanddark-matterparticles. Althoughtheresultspresentedherecorrespondtotheanalysisofjustoneboxinthe“Solarneighbourhood”thefeaturesobservedherearerepresentativeofwhatisseenforothersimilarvolumesinthisregionofthegalaxy. IV.DISCUSSION Thebuildupofdark-matterhalosinahierarchicaluni-verseisaverynonlinearprocess,whichhappensthroughthemergingandaccretionofsmallersubunits.Thedom-inantdynamicalprocessesatworkaretidalstripping,bywhichasatellitehaloprogressivelylosesitsmass,and phase-mixingbywhichthismassisprogressivelystrungoutalongstreams.Asanexamplewebrieflydiscussahaloof4.3×1010M⊙accretedatz=1.8(t=3.62Gyr),andthemasslostbetweenz=0.13andz=0.06(t=12.08andt=12.91Gyr).InFigure13weshowthedistributionofparticleslostinthisredshiftrange,ina2–dimensionalprojection(r,vr)ofphase-space.Intheleftpanelweshowtheirdistributionjustaftertheywerereleasedfromtheirparentsatellite.Therightpanelshowsthatwhatwasinitiallyarelativelycoherentsetofparticleswithsimilarmotions,hasbythepresenttimespreadoutintofourdifferentstreamswhichareseentooverlapinspace.Notethatthishappenedinlessthan1.7Gyr,whichshowshowshortthemixingtimescalesareintheinnergalaxy. Thedensityinastreamdecreasesintime,asthepar-ticlesspreadoutalongtheorbitoftheirprogenitorsys-tem.Becausetheorbitdefinesa3–dimensionalvolume(adoughnutshapedvolumedefinedbytheorbitalturningpoints),thedensityinastreamwilldecreaseas(t/torb)−3[27].Thus,extrapolatingtheresultobtainedforthema-terialshowninFig.13–theformationof4streamsin1.7Gyr–,andnotingtheveryearlybuildupofthegalaxyhalo(asdemonstratedinSec.IIIA2),weestimatethatatleast4×(0.7Gyr/0.35Gyr)3×(10Gyr/1.7Gyr)3∼6500darkstreamsshouldbepresentintheSolarneighbour-hood(adetailedcarefulanalysis,takingalsointoaccountotherhalos,showsthatthisnumbershouldbeevenlarger[41]).HereweusedthattheorbitalperiodsofparticlesinFig.13areoftheorderof0.7Gyr,whilethemedianforparticlesneartheSuniscloserto0.35Gyr. Wenoteherethatsomeauthors[24,26]haveassumedthatthedensitydecreaseinastreamisslowerintime(linearorquadratic),fromwhichthey(incorrectly)de-ducethatthestreamsshouldhavemuchhigherdensities.Theseworksthenarguethatstreamscanstronglyaffectthesignaldetectedforthefluxofdark-matterparticlesgoingthroughtheEarth.Wehavejustshownthisisnotthecase. FIG.12:ForthesameboxasinFigures9,10and11,weplotthe“(averaged)velocitycorrelationfunction”ξ.Itisdefinedasthenumberofneighbourswithvelocitydifferencelessthanagivenvaluecomparedtowhatisexpectedforran-domdeviates.InthiscasetherandomdeviatesaredrawnfromamultivariateGaussianwiththesamenumberofpar-ticlesandvelocitydispersiontensorasthedata.Asteriskscorrespondtoξoveralltheparticlesinthebox,whereasdiamondstothe1%fastestmovingparticles.Bothforthefulldatasetandforthefastestmovingparticlesthereisasignalatsmallvelocitydifferences,indicativeofthepresenceofstreams.Thissignalisclearlymuchstrongerforthesub-setofmostenergeticparticles.TheerrorbarsarebasedonPoissoniancounts. FIG.13:Hereweshowthephase-spaceprojection(r,vr)forparticleslostfromahalobetweenz=0.13andz=0.06(be-tween12.1and12.9Gyr).Theleftpanelshowstheirdistribu-tionclosetowhentheywerereleased.Therightpanelshowstheirpresentdaydistribution.Themultiplestreamswereproducedinthelapseofatmost1.7Gyr.Thegreycurveshavebeenaddedtohighlightthelocationofthesestreamsinthediagram. 11 Theseresultsalsoapplytothedensitycontrastincaus-ticsurfacesorrings,expectedtoformattheorbitalturn-ingpoints.Wenoteherethattheproposedlargeeffectassociatedwithsheetsofparticlesfallinginforthefirst,secondorthirdtimeisnotobservedinoursimulations.Thisisnotduetoourfiniteresolution(assuggestedby[42]),butduetothefactthattheformationtimeoftheinnerhaloissostronglybiasedtohighredshifts.SinceparticleswhichorbittheSolarneighbourhoodhaveor-bitalperiodsoftheorderof0.35Gyr,andtheinnergalaxywasalreadyinplace10Gyrago,thisimpliesthatthedensityofthesecausticstructuresshouldbeoftheorderof(10Gyr/0.35Gyr)−3∼4×10−5timessmallertoday.Forthesereasonsstructuressuchascausticringsorsurfaceswilllikelyhavenoeffectonthesignalthatdark-matterexperimentswilldetect. Recentanalyticwork[25]hasfocusedontheeffectofrecentlyaccretedmaterialonthevelocitydistributionfunctionneartheSun.Astheseauthorsdiscuss,suchmaterialwillmostlydominatethehighenergytailofthevelocitydistribution,andprovideanon-GaussianandperhapsmoreeasilydetectablefeatureinthespectrumofparticlesthatgothroughtheEarth.AlthoughwereachasimilarconclusioninSec.C.2,wedonotagreeonthemagnitudeofthiseffect.Inparticular,wefindthatthedensityofstreamsfromsuchrecentlyaccretedmaterialisafactoroftensmallerthanhasbeenestimatedin[25].Probablecausesforthisdiscrepancycanbeperhapsbeattributedtothedifferentorbitaldistributionsoftheac-cretedlumps(providedabinitioinoursimulations,andassumedtohaveaparticularformin[25]);andinthedif-ferentmethodsusedtomeasurethedensityofastream(totaldensityofmaterialfromanaccretedhaloversusdensityofindividualstreams). Althoughoursimulationrepresentstheformationofaclusterhalo,ratherthanthatofagalaxy,anditisonlyonepossiblerealizationoftheformationofadark-matterhalo,webelievetheconclusionswehavereachedarero-bust.Forexample,themassgrowthhistoryofthispartic-ularhaloisconsistentwiththatoftheMilkyWay:mostofthemasswasalreadyinplaceintheclusterhalo10Gyrago,ingoodagreementwiththeageoftheoldeststarsintheMilkyWaydisk.Highresolutionsimulationsbyotherauthorshaveshownthatgalaxyandclustersizedhalosgrowinstatisticallysimilarwaysandthatourparticularhaloisnotunusual[36](seealso[44]).Also,theprop-ertiesofthevelocitydistributionofdark-matterintheSolarNeighbourhoodareingoodagreementwiththeob-servedkinematicsofhalostars[43].Moreover,thechar-acteristicsofthestreamsinoursimulation,suchastheirlowdensitiesandlargenumber,areconsistentwiththesimpleanalyticestimatesdiscussedabove.Workalongthelinesof[25]canprovidefurtherinsightonhowmuchvariationonemayexpecttofindonahalo-to-halobasis. 12 V. CONCLUSIONS Weanalysedahighresolutionsimulationofthefor-mationofaclusterinaΛCDMcosmology.Byscalingitdowntoagalaxysizehalo(bytheratioofthemaximumcircularvelocities)wewereabletomakepredictionsfortheexpecteddark-matterdistributionneartheSun.Ourresultsindicatethatdirectdetectionexperimentsmayquitesafelyassumethatthedistributionofdark-matterparticlesintheSolarneighbourhoodiswellrep-resentedbyamultivariateGaussian.WefindthatnoneofthestreamspresentinanyofthevolumesattheSun’sdistancefromtheGalacticcentredominatetheirlocaldistribution.Themeandensityofanindividualstreamistypically0.3%thatofthelocaldark-matterdistribu-tion(deducedfromthenumberofparticlesintheratherdensestreamshowninFigure10).Thesesmallvaluesareduetothefactthatmostofthestreamsintheinnergalaxycomefromafewmassivehalosthatmergedathighredshifttobuilduptheobjectweseetoday.Theselargehalosmixextremelyquicklyandthereforegiverisetolowdensitystructures.Strongdensityenhancementssuchasthosepredictedin[24,42]areextremelyunlikelyintheinnerGalaxy.Oursimulationalsoshowsthatwe shouldnotexpecttofinddense,recentlyformedstreamsneartheSun,sincethelastaccretioncontributingmattertotheSolarneighbourhoodtypicallytookplaceabout1Gyrago,andprovidesonly∼10−4ofthetotalmassinthisregion.Moreover,wefindthatfewerthan1%ofthelocaldark-matterparticlescouldbepartofsmalldensesubhaloswhichhavesurvivedintactwithinthelargerhalooftheMilkyWay.Itisthereforeunlikelythatanindividualhalowiththesecharacteristicswilldominatethesignalindirectdetectionexperiments. Directdetectionexperimentswhicharesensitivetothedirectionofmotionofthefastestmovingdark-matterparticlesmaydiscoveradirectindicationofthehierar-chicalgrowthofourGalaxy’shalo.Theexpectedsignalforthesefastestmovingparticlesishighlyanisotropic,andcouldbeeventuallybeused,notjusttodeterminethenatureofthedark-matter,butalsotorecover,atleastpartially,therecentmerginghistoryoftheMilkyWay.WethankBenMooreandLeoStodolskyforusefuldiscussionswhichtriggeredmanyoftheideasdiscussedhere;UrosSeljakandAnneGreenforhelpingusimprovethemanuscript.AHwishestothankJokeforbeingacontinuoussourceofinspiration. [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21] F.Zwicky,Helv.Phys.Acta6110(1933).S.Smith,Astrophys.J.8323(1936). V.Rubin&W.K.Ford,Astrophys.J.159379(1970).S.Faber&J.S.Gallagher,Ann.Rev.Astron.andAs-troph.17135(1979). V.Rubin,W.K.Ford&N.Thonnard,Astrophys.J.238471(1980). P.J.E.Peebles,Astrophys.J.Lett.151(1974).P.J.E.Peebles,Astrophys.J.Lett.2631(1982). G.R.Blumenthal,S.M.Faber,J.R.Primack&M.J.Rees,Nature311517(1984). M.Davis,G.Efstathiou,C.S.Frenk&S.D.M.White,Astrophys.J.292371(1985). R.Peccei&H.R.Quinn,Phys.Rev.Lett.381440(1977).C.Hagmannetal.,Phys.Rev.Lett.802043(1998).I.Ogawa,S.Matsuki&K.Yamamoto,Phys.Rev.D531740(1996). R.Bernabeietal.[DAMACollaboration],Phys.Lett.B480,23(2000). R.Abusaidietal.[CDMSCollaboration],Phys.Rev.Lett.84,5699(2000). A.Benoitetal.[EDELWEISSCollaboration],Phys.Lett.B51315(2001).L.Bergstr¨om,Rep.Prog.Phys.63793(2000).D.N.Spergel,Phys.Rev.D371353(1988). A.K.Drukier,K.Freese&D.N.Spergel,Phys.Rev.D333495(1986). K.Freese,J.Frieman&A.Gould,Phys.Rev.D373388(1988). R.Bernabeietal.[DAMACollaboration],Phys.Lett.B424195(1998). P.Ullio&M.Kamionkowski,J.HighEnergyPhys.103049(2001).[22]A.M.Green,Phys.Rev.D63043005(2001) [23]N.W.Evans,C.M.Carollo&P.T.deZeeuw,Mon.Not. R.Astron.Soc.3181131(2000). [24]P.Sikivie,Phys.Lett.B432139(1998). [25]D.Stiff,L.M.Widrow&J.Frieman,Phys.Rev.D 083516(2001). [26]C.Hogan,Phys.Rev.D063515(2001). [27]A.Helmi&S.D.M.White,Mon.Not.R.Astron.Soc. 307495(1999). [28]A.Helmi,S.D.M.White,P.T.deZeeuw&H.S.Zhao, Nature40253(1999). [29]R.Ibata,G.Gilmore&M.Irwin,Nature370194(1994).[30]V.Springel,S.D.M.White,G.Tormen&G.Kauffmann, Mon.Not.R.Astron.Soc.328726(2001). [31]V.Springel,N.Yoshida&S.D.M.White,NewAstron.6 79(2001). [32]G.Tormen,F.R.Bouchet&S.D.M.White,Mon.Not. R.Astron.Soc.286865(1997). [33]A.Guth,Phys.Rev.D23347(1981). [34]C.Lacey&S.Cole,Mon.Not.R.Astron.Soc.262627 (1993). [35]B.Moore,S.Ghigna,F.Governato,G.Lake,T.Quinn, J.Stadel&P.Tozzi,Astrophys.J.Lett.52419(1999).[36]Y.P.Jing,Y.Suto,Astrophys.J.Lett.52969(2000).[37]B.Moore,C.Calcaneo-Roldan,J.Stadel,T.Quinn,G. Lake,S.Ghigna&F.Governato,Phys.Rev.D063508(2001). [38]P.Sikivie,I.I.Tkachev&Y.Wang,Phys.Rev.D561863 (1997). [39]K.Freese,P.Gondolo&L.Stodolsky,Phys.Rev.D 123502(2001). [40]M.Kerscher,I.Szapudi&A.Szalay,Astrophys.J.Lett. 53513(2000). 13 [41][42][43][44] A.Helmi,S.D.M.White&V.Springel,inpreparation.P.Sikivie,astro-ph/0109296(2001). M.Chiba&T.C.Beers,Astron.J.1192843(2000).D.Zhao,H.Mo,Y.P.Jing&G.Boerner,astro-ph/0204108(2002). [45]ThisisbecauseM∝R3∝V3,andthusifMf=2Mi 3333 thenRfVf∝4RiVi [46]Ifinitially∆x∆visthephase-spacevolumeoccupiedby ′ thesatellite,andif∆′xisitsfinalvolume,then∆v= ′ ∆v×∆′x/∆x,whereasdiscussedabove,∆xisthevolumegivenbytheorbit,andismuchlargerthantheoriginalvolumeofthesatellite.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- baomayou.com 版权所有 赣ICP备2024042794号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务