您好,欢迎来到宝玛科技网。
搜索
您的当前位置:首页人教版八年级上册 14.2.2 完全平方公式(二)教案

人教版八年级上册 14.2.2 完全平方公式(二)教案

来源:宝玛科技网
 本文由一线教师精心整理/word可编辑

主 备: 辅 备: 上课时间 上课教师 课题: 年 月 日 (星期 ) 班 级 本周第( )课时 八年级( )班 总( )课时 《14.2.2 完全平方公式(二)》 知识与技能 三维 过程与方法 目标 情感态度与价值观 利用添括号法则灵活应用完全平方公式 利用去括号法则得到添括号法则,培养学生的逆向思维能力 鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神 教学重点:理解添括号法则,进一步熟悉乘法公式的合理利用 教学难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的 教学方法与手段:引导─探究相结合 教学过程: 一.提出问题,创设情境 [师]请同学们完成下列运算并回忆去括号法则. (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c) [生]解:(1)4+(5+2)=4+5+2=14 (2)4-(5+2)=4-5-2=-3 或:4-(5+2)=4-7=-3 (3)a+(b+c)=a+b+c (4)a-(b-c)=a-b+c 去括号法则: 去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合. 也就是说,遇“加”不变,遇“减”都变. [师]∵4+5+2与4+(5+2)的值相等;4-5-2与4-(5+2)的值相等.所以可以写出下列两个等式: (1)4+5+2=4+(5+2) (2)4-5-2=4-(5+2) 左边没括号,右边有括号,也就是添了括号,•同学们可不可以总结出添括号法则来呢? (学生分组讨论,最后总结) [生]添括号其实就是把去括号反过来,所以添括号法则是: 修订、增减 1 / 3

本文由一线教师精心整理/word可编辑

添括号时,如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号. 也是:遇“加”不变,遇“减”都变. [师]能举例说明吗? [生]例如a+b-c,要对+b-c项添括号,可以让a先休息,括号前添加号,括号里的每项都不改变符号,也就是+(+b-c),括号里的第一项若系数为正数可省略正号即+(b-c),于是得:a+b-c=a+(b-c);若括号前添减号,括号里的每一项都改变符号,+b改为-b,-c改为+c.也就是-(-b+c),于是得a+b-c=a-(-b+c).添加括号后,无论括号前是正还是负,都不改变代数式的值. [师]你说得很有条理,也很准确. 请同学们利用添括号法则完成下列练习: (出示投影片) 1.在等号右边的括号内填上适当的项: (1)a+b-c=a+( ) (2)a-b+c=a-( ) (3)a-b-c=a-( ) (4)a+b+c=a-( ) 2.判断下列运算是否正确. (1)2a-b-cc=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b) 22 (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5) 总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,•所以我们可以用去括号法则验证所添括号后的代数式是否正确. 二.导入新课 [师]有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算. (出示投影片) 例:运用乘法公式计算 (1)(x+2y-3)(x-2y+3) (2)(a+b+c) (3)(x+3)-x (4)(x+5)-(x-2)(x-3) 三.随堂练习 课本P111练习 2 / 3 2222 本文由一线教师精心整理/word可编辑

教师小结: 通过本节课的学习,你有何收获和体会? 我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算. 我体会到了转化思想的重要作用,•学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等. 布置作业: 课本P112习题14.2第3题 板书设计: 14.2.2 完全平方公式(二) 1、去括号法则:a+(b+c)=a+b+c a-(b+c)=a-b-c 添括号法则: a+b+c=a+(b+c) a+b+c=a-(-b-c) 2.判断下列运算是否正确: 方法一:用去括号法则验证. 方法二:用添括号法则验证. 教学反思:

3 / 3

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baomayou.com 版权所有 赣ICP备2024042794号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务