TheQuantumHallEffect
UnifiedScalingTheoryandQuasi-particlesattheEdge
A.M.M.PruiskenandK.Schoutens
InstituteforTheoreticalPhysics
UniversityofAmsterdamValckenierstraat651018XEAmsterdamTHENETHERLANDS
Abstract
WeaddresstwofundamentalissuesinthephysicsofthequantumHalleffect:aunifieddescriptionofscalingbehaviorofconductancesintheintegralandfractionalregimes,andaquasi-particleformulationofthechiralLuttingerLiquidsthatdescribethedynamicsofedgeexcitationsinthefractionalregime.
1
1Introductionandsummary
AunifieddescriptionofthescalingbehaviorintheintegralandfractionalquantumHallregimesrequiresatreatmentthatcombinestheeffectsofimpuritiesandofelectron-electroninteractions.Therearetworecentdevelopmentsthathaveclearedthewayforaseriouseffortinthisdirection.ThefirstistheuseofChern-Simonsgaugetheory,whichmakesitpossibletoconstructamappingbetweentheintegralandfractionalregimes.TheseconddevelopmentistherecentanalysisbyPruiskenandBaranov(1995)ofscalingbehaviorinthepresenceoftheCoulombinteraction.Inthispaperwebrieflyreviewtheseresults.
EffectivetheoriesforexcitationsattheedgeofaquantumHallsampletaketheformofachiralFermiliquid(intheintegralregime)orchiralLuttingerliquid(inthefractionalregime).TheLuttingerliquidbehaviorofedgecurrentsinquantumHallsampleswithfillingfractionν=1/3hasbeenprobedinrecentexperiments(Millikenetal1996,Changetal1996).Inrecenttheoreticalwork,theConformalFieldTheoriesthatdescribethechiralLuttingerliquidsforfillingfractionsν=1/(2m+1)havebeenanalyzedusingaso-calledquasi-particleformulation.WeshallherebrieflyexplainthatmanyoftheremarkablefeaturesofthefractionalquantumHalledgedynamicsarenaturallyexplainedinasuchaquasi-particlepicture.
2Thequestforaunifiedscalingtheory
OurmicroscopicunderstandingofthequantumHalleffect(qHe)haslargelydevel-opedalongtwoseparatepathwayswhichforalongtimeappearedtohaveverylittleincommon(PrangeandGirvin1990).Thefirstandpossiblymostpopularlystudiedroute—initiatedbyLaughlin—isthatofthe“clean”statesofthe2Delectrongas.Thefocusisprimarilyontheeffectsofstrongcorrelationbetweentheelectrons.Thefrac-tionalqHe,whichmanifestsitselfonlyinhighquality,highmobilityheterostructures(Chang1990),isgenerallybelievedtobesuchastronglycorrelatedphenomenonwithnovelfeaturessuchasfractionalstatisticsandchargeofquasi-particles.
Thesecondapproach—whichsofarhasbeenrestrictedtotheregimeoftheinte-gralqHe—isthatofthe“impure”ordisorderdominatedstatesofthe2Delectrongas.Here,themainphysicalobjectiveistounderstandthephenomenonofAndersonlocal-izationoffreeelectrons,whichmanifestsitselfmacroscopicallythrough“scaling”oftheconductanceswithvaryingexperimentalparameterssuchasmagneticfieldandtem-perature(Pruisken1988).Theso-called“scalingtheory”oftheintegralqHe(Fig.1)hasgeneratedasubstantialamountofexperimental(Weietal1988,Kochetal1991,Engeletal1993,Hwangetal1993)andnumerical(Huckensteinetal1990,Huoet
2
Figure1:ScalingdiagramoftheconductancesintheintegralquantumHallregime(Pruisken
1988).Thearrowsindicatethescalingtowardlargesamplesizes(orlowT)andtheflowlinesareperiodicinσxywithperiode2/h.
al1993)resultsonthecriticalaspectsofthe“transitions”betweenadjacentquantumHallplateaus.Criticalityplaysafundamentalroleinthetheoryofmetalsandinsula-torsingeneralandhereitelucidatesthesurprisingmechanismof“delocalization”ofthe2Delectrongasinstrongmagneticfields(PhysicsToday1988).
Despitethefactthattheextremetheoreticalapproachesof“clean”and“disor-dered”stateswereoriginallyformulatedinatotallydifferentlanguage,itisnaturaltoexpectthatthetrue,experimentalsituationmustvarycontinuouslybetweentheseextremes,theprecisephysicaloutcomebeingdeterminedbysamplespecificparame-terssuchasamountandtypeofdisorderandtemperature.Severalauthors(Laughlinetal1985)haveelaboratedonanimportantpredictionoftherenormalizationtheoryoftheintegralqHewhichsaysthatthelowerportionoftheσxx−σxyscalingdiagramisinfacta“forbidden”regionforfreeelectrons.Thisforbiddenregion,indicatedby“?”inFig.1,wassubsequentlyrecognizedasthefractionalquantumHallregime.Hence,therehasbeenalongstandingexpectationofa“unifiedscalingtheory”whichsimultaneouslyincorporatestheeffectsofstrongcorrelationanddisorder,i.e.describesbothintegralandfractionalqHe.
3
3
Chern-Simonsgaugetheoryandinstantonvac-uum
InthisSectionwediscusstwoimportantrecentdevelopmentswhichinprinciplecanbe(andhavealreadybeen)usedinordertosubstantiatetheabovementionedconjec-tureofaunifiedscalingtheory.First,thereistheChern-Simons(CS)gaugetheoryapproach(Wilczek1982,Zhangetal19,LopezandFradkin1991,Kivelsonetal1992,Halperinetal1993)whichhasbecomeinstrumentalalsoinotherstronglycor-relatedelectronsystemssuchasthechiralspinliquidandanyonsuperconductivity.Theseconddevelopmentisarecentanalysisofscalingbehaviorinthepresenceofelectron-electroninteractions(PruiskenandBaranov1995).
(i)SeveralauthorshaveexploitedthefactthatbycouplingCSgaugefieldstoan
electroniccurrentdensityoneproducesatheorywithprobabilityamplitudeswhichareidenticaltothoseobtainedintheoriginaltheory(i.e.withoutthegaugefieldspresent),providedtheCScouplingconstantor“statisticsangle”θischosentobeamultipleof2π.
Theinterestingobservationisbeingmade(LopezandFradkin1991)thatthestatisticalgaugefields—atameanfieldlevel—produceapicturewhichinallrespectsisidenticaltothe“compositefermion”theoryofJain.Withinthesemiclassicalapproximation(i.e.meanfieldplusgaussianfluctuations),however,allthephysicsoftheLaughlinincompressibleliquidstateisreproduced.Inthisway,CSgaugetheoryformallyprovidesa”mapping”betweentheintegralandfractionalquantumHallplateaus.
AlthoughthesemiclassicaltheoryoftheCSgaugefieldsisstrictlyvalidonlyifoneassumesagapintheenergyspectrum,thesameprocedurehasneverthe-lessbeenappliedtoanypossiblecompressible(metallic)stateintheproblem(Kivelsonetal1992).Ifsuchanapproachcanindeedbejustifiedingeneral,itwouldimplythatthescalingbehavioroftheintegralregimecanformallybemappedontothatofthefractionalregime.Anexplicitsl(2,Z)dualsymmetryhasbeenobtainedbetweentheintegralquantumHallregime,wheretheresultsofthescalingtheoryapply,andthefree-electron-forbiddenfractionalquantumHallregime,denotedby“?”inFig.1.
Unfortunately,thereexistsverylittleknowledgewhichwouldjustifythevalidityofsemiclassicalapproximationsforcompressibleormetallicstates.Forinstance,althoughthehalf-integralquantumHalleffectformallyappearswithintheframe-workofthesemiclassicaltheory,itisknown(Halperinetal1993)thatthegauge
4
fieldfluctuationsgiverisetodivergentcontributionstothequasi-particlepropa-gator,indicatingthatitisdifficulttoextract(eitherexplicitorimplicit)knowl-edgeabouttheinfraredbehaviorofthetheory.Another,possiblymoreseriouscomplicationarisesfromthefactthattheconductancefluctuationsareverylargeatthequantumHalltransitions(CohenandPruisken1993,1994).ThisraisesfundamentalquestionsaboutthevalidityoflinearresponsetheoryasawholeandofsemiclassicalanalysesoftheCSgaugetheoryinparticular.Amicroscopictheoryforelectronicdisorderisobviouslywhatisneededinordertocompletelyunderstandtheproblemsathandand,ultimately,totakefulladvantageoftheCSgaugetheoryapproach.
Muchoftheproblematics,raisedinthisSection,hasalreadybeenencounteredmoreexplicitlyintheextensiveexperimentalstudiesonscalingintheintegralquantumHallregime(PruiskenandWei1993).Thatis,detailedcomparisonbetweenthepredictionsofthefreeelectronrenormalizationtheoryandtheex-perimentaldatatakenfromlowmobilityheterostructureshasprovidedimpor-tantinsightinthepossibleroleplayedbytheelectron-electroninteractionsintheproblem.
(ii)ThisbringsusbacktooneofthelongstandingproblemsinthetheoryoftheqHe,
whichiswhetherandhowthetopologicalconceptofaninstantonvacuum—whichhassuchadramaticimpactonthelocalizationoffreeelectrons(Pruisken1984,1987)—hasanyrelevanceforasystemofinteractingelectrons.TheissuewasaddressedinarecentdetailedanalysisbyPruiskenandBaranov(1995).Finkelstein’sgeneralizedsigmamodeltheory(Finkelstein1983,1984,1994)wasusedasastartingpointfortheanalysisandadaptedtotheproblemofstrongLandaulevelquantization.Ithasturnedoutthatinstantoneffectsgiverisetoessentiallythesamescalingdiagramfortheconductancesaswasobtainedwithinthefreeelectrontheory,withoneimportantexception:thetemperaturealsoscalesnon-trivially,andthisimpliesanon-trivialdynamicalscalingbehaviorintheproblem.
4Towardaunifiedscalingtheory
AlthoughtheCoulombinteractionproblemturnsouttosharemanyfeatureswiththefreeelectrontheoryoftheqHe(asymptoticfreedom,instantonsetc.),itistruethatmanyofthephysicalobjectivesoftheoriginal,perturbativeFinkelsteinapproachhaveactuallyremainedwithoutananswer.Foronething,itisunclearhowoneshouldgobeyondtheperturbativemetallicregimeandextendthetheorytoinclude
5
Figure2:ScalingdiagramforthefractionalquantumHallregimewithσxy<
1
tronicspecificheatCV,whichrevealsmuchofthelowenergyphysicsoftheinteracting,disorderedelectrongasneartwospatialdimensions.ThefollowingexpressionfortheenergyE(relativetothezeropointenergy)hasbeenextractedfromweakcoupling,perturbativeexpansions
E=
∞0
dǫǫnbe(T)ρqp(ǫ).(4.1)
Themeaningofthesymbolsisasfollows.Theintegralisovertheexcitationenergiesrelativetothechemicalpotential.Thenbe=1
thesigmamodeleffectiveaction,provideinprincipleaunifyingrenormalizationgrouptheoryofintegralandfractionalregimes.Fig.2illustratesthescalingresultsobtainedfromweakcoupling(perturbativeandnon-perturbative)analyses.ItisinterestingtonoticethatFig.2differsfromthehistoricalguess(Laughlinetal1985)byaslightredefinitionofthefixedpointsontheevendenominatorlines1/2,1/4,etc.Thedifferenceisfundamental,however,sincetheunstablefixedpointsatσxy=1/2,1/4etc.nowdescribethehalfintegerphase(Halperinetal1993)whichservesasaperturbative,weakcouplingregimeinthepresentcontext.
OurunifyingtheoryfortheintegerandfractionalquantumHallregimesimpliesthatthereisthehighlynon-trivialrelationbetween”edge”and”bulk”effectsandthisisalargelyopenproblemasofyet.Interestinglyenough,onehastodealherewithtwotopologicalconceptssimultaneously(CSgaugetheoryandinstantonvacuum)whichtogethershouldrelatethedisorderedquasi-particlesystemofthebulktotheLuttingerliquidbehavioroftheedgestates(seeSection5below).
5Quasi-particlesattheedge
Inthepastfiveyears,ithasbeenrecognizedthatmuchoftheunusualphysicsofthe(fractionalorinteger)quantumHalleffectisreflectedbythepropertiesoftheso-callededgestates,whicharelocalizedatthephysicalboundaryofaquantumHallsample.Whiletheedgestatesformaone-dimensionalFermiliquidforintegerfillingfrac-tions,theyshownon-Fermiliquidpropertiesinthefractionalregime.Thetheoreticalprediction(Wen1990,1992)isthattheedgestatesformachiralLuttingerLiquidwithcharacteristicparametersdependingonthefillingfractionν.TheseparametersaredirectlyrelatedtotheChernSimonsgaugetheoryforthebulkdegreesoffreedom(seeSection3).Theadjective“chiral”meansthatatagivenboundarytheedgeexcitationscanonlytravelinonedirection.Duetothis,backscatteringisnotpossible.ThechiralLuttingerLiquidhasbeenpredictedtobestableanduniversal.
Toactuallytestthesetheoreticalpredictions,oneneedsanexperimentthatdirectlyprobesthenon-trivialpropertiesoftheedgestates.Onepossibilityforthisistocreateaso-calledpointcontactbetweentwofractionalquantumHalledgesandtostudythetunnelingoftheedgeexcitationsthroughthiscontactasafunctionoftemperatureandofanappliedgatevoltage.Forfillingfractionν=1/3,thisexperimenthasbeenperformed(Millikenetal1996)andtheexperimentalresultshavebeenclaimedtobeinagreementwiththeoreticalpredictions.Inanotherexperiment(Changetal1996)theI−Vcharacteristicsforacurrenttunnelingfromabulkmetalintoaν=1/3edgehavebeenmeasured.Inthenon-linearregime,thedatacanbefittedtoapowerlawI∝Vαwithα=2.7±.06foraspecificsample.
8
ThechiralLuttingerliquidsforthefractionalqHeedgedynamicsareexamplesofso-calledConformalFieldTheories.Forthespecificcaseofedgetheoriesforfillingfractionν=1/(2m+1),m=1,2,...,thisConformalFieldTheoryisparticularlysimple.Itisusuallyanalyzedin“bosonized”form,theorganizingprinciplebeingtheU(1)Kac-Moodyalgebrageneratedbythechargedensityoperator.Wehereproposethatitismuchmorenaturaltoanalyzethistheorydirectlyintermsofthebasicquasi-particles,whicharenotelectronsbutquasi-particlesofchargee/(2m+1)andofscalingdimensionx=1/(4m+2).Theedgeelectronisacompositeof(2m+1)ofthesequasi-particlesandassuchithasscalingdimension(2m+1)2x=(2m+1)/2.Thesystematicsofthequasi-particleformulationoftheedgetheoryforν=1/(2m+1)haverecentlybeenworkedout(Iso1995,SchoutensandvanElburg).Theyarecloselyanalogoustothesystematicsoftheso-calledspinonformulationsoftheConformalFieldTheoryfortheHeisenbergandHaldane-Shastryspinchains(Haldaneetal1992,Bouwknegtetal1994),whichisformallyidenticaltothecasem=1/2oftheqHeedgetheories.
Toillustrateourpointofview,wegiveonesimplebutimportantexample,whichisthetunnelingdensityofstatesA(ǫ).Thisquantityequalsthespectraldensityforone-electronexcitationswithexcessenergyǫoverthegroundstate.InfreeelectrontheoriesA(ǫ)doesnotdependonǫ.However,letusnowconsidercreatingaone-electronexcitationinatheorywithν=1/(2m+1).Thismeanscreating(2m+1)quasi-particleswiththesingleconstraintthatthesumoftheirenergiesequalsǫ.Clearly,anexpressionforA(ǫ)willcontain2mfreeintegrationsoverenergyvariables.ItwillthereforedependonǫasA(ǫ)∝(ǫ−µ)2m.Ourreasoninghere,whichconfirmstheresultof(Wen1990),nicelyillustratesthepowerofthequasi-particleformulation.ThepowerlawforA(ǫ)impliesnon-linearI−Vcharacteristicsforelectrontun-neling.Forν=1/3thequantitativepredictionisI∝V3,whichcanbecomparedwiththeChangetalexperiment.
Theexacttheoreticalanalysis(Fendleyetal1995)oftheuniversalconductancecurvefortheMillikenetalexperimentmadeuseofanotherquasi-particlebasisoftheν=1/3edgetheory.Thisbasishasitsoriginintheoreticalwork(GoshalandZamolodchikov1994)onintegrableboundaryscattering.Thepreciserelationamongthevariousquasi-particleformulationsthatarerelevantforthetunnelingexperimentsiscurrentlyunderstudy.
Acknowledgement.
ThisworkwassupportedinpartbythefoundationFOMoftheNetherlands.
9
References
—D.BelitzandT.R.Kirkpatrick,Rev.Mod.Phys.166,261(1994).
—P.Bouwknegt,A.W.W.LudwigandK.Schoutens,Phys.Lett.338B,448(1994).—A.M.Changin“TheQuantumHallEffect”,Eds.R.E.PrangeandS.M.Girvin(SpringerVerlag,Berlin,1990).—A.M.Chang,L.N.PfeifferandK.W.West,Phys.Rev.Lett.77,2538(1996).—M.H.CohenandA.M.M.Pruisken,AIPConf.Series286,205AIP(1993);Phys.Rev.B49,4593(1994).—L.W.Engel,D.Shakar,C.KurdakandD.C.Tsui,Phys.Rev.Lett.71,2638(1993).—P.Fendley,A.W.W.LudwigandH.Saleur,Phys.Rev.Lett.74,3005(1995).—A.M.Finkelstein,JETPLett.37,517(1983);Sov.Phys.JETP59,212(1984);PhysicaB197,636(1994).—S.GoshalandA.B.Zamolodchikov,Int.Jour.Mod.Phys.A9,3841(1994).—F.D.M.Haldane,Z.N.C.Ha,J.C.Talstra,D.BernardandV.Pasquier,Phys.Rev.Lett.69,2021(1992).—B.I.Halperin,P.A.LeeandM.Read,Phys.Rev.47,7312(1993).—B.HuckesteinandB.Kramer,Phys.Rev.Lett.,1437(1990).—Y.Huo,R.E.HetzelandR.M.Bhatt,Phys.Rev.Lett.70,481(1993).—S.W.Hwang,H.P.Wei,L.W.Engel,D.C.TsuiandA.M.M.Pruisken,Phys.Rev.B48,11416(1993).—S.Iso,Nucl.Phys.B443581(1995).
—S.Kivelson,S.C.ZhangandD.H.Lee,Phys.RevB46,2223(1992).
—S.Koch,R.J.Hang,K.vonKlitzingandK.Ploog,Phys.Rev.Lett.67,883(1991).
10
—R.B.Laughlin,M.L.Cohen,J.M.Kosterlitz,H.Levine,S.B.LibbyandA.M.M.Pruisken,Phys.Rev.B32,1311(1985).—A.LopezandE.Fradkin,Phys.Rev.B44,5246(1991).
—F.P.Milliken,C.P.UmbachandR.A.Webb,SolidStateComm.97,309(1996).—PhysicsToday,Search&Discovery,September1988.
—“TheQuantumHallEffect”,Eds.R.E.PrangeandS.M.Girvin(SpringerVerlag,Berlin,1990).—A.M.M.Pruisken,Nucl.Phys.B235[FS11],277(1984).
—A.M.M.Pruisken,Nucl.Phys.B285[FS19],719(1987);Nucl.Phys.B290[FS20],61(1987).—A.M.M.Pruisken,Phys.Rev.Lett.61,1298(1988)andreferencestherein.—abriefaccountofthisworkhasappearedinA.M.M.PruiskenandM.A.Baranov,Europhys.Lett.31,543(1995).—A.M.M.PruiskenandH.P.Wei,AIPConf.Series286,215AIP(1993).—K.SchoutensandR.vanElburg,inpreparation
—H.P.Wei,D.C.Tsui,M.A.PalaanenandA.M.M.Pruisken,Phys.Rev.Lett.61,1294(1988)andreferencestherein.—X.G.Wen,Phys.RevB41,12838(1990);Int.Jour.Mod.Phys.B6,1711(1992).—F.Wilczek,Phys.Rev.Lett.48,1144(1982).
—S.C.Zhang,T.HanssonandS.Kivelson,Phys.Rev.Lett.62,82(19).
11
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- baomayou.com 版权所有 赣ICP备2024042794号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务