您好,欢迎来到宝玛科技网。
搜索
您的当前位置:首页Asymmetric electrocyclic reactions

Asymmetric electrocyclic reactions

来源:宝玛科技网
View Article Online / Journal Homepage / Table of Contents for this issue

ChemSocRev

Citethis:Chem.Soc.Rev.,2011,40,4217–4231www.rsc.org/csr

Dynamic Article Links

CRITICALREVIEW

Asymmetricelectrocyclicreactions

SamThompson,AnthonyG.Coyne,PeterC.KnipeandMartinD.Smith*

Received21stJanuary2011DOI:10.1039/c1cs15022g

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GThiscriticalreviewoffersanoverviewofasymmetricelectrocyclicprocesses,wherediastereo-orenantioselectivityisaconsequenceoftheinfluenceofachiralcomponent(beitsubstrateorcatalyst)ontheelectrocyclicbond-formingprocess(195references).SincetheirrationalizationbyWoodwardandHoffmann,1electrocyclicreactionshavedevelopedfrommechanisticcurio-sitiesintoviableandpowerfulbond-formingprocesseswithapplicationinthegenerationofcomplexmolecules.2However,incomparisonwithionic,radicalandalternativepericyclicreactionmanifolds(suchascycloadditions)therearefewmethodsforstereocontrolinelectrocyclicprocesses,andnogeneralapproachesforthecontrolofabsolutestereochemistry.Onereasonforthismaybethatthechallengesofdesigningandengineeringsuitablesubstratesamenabletocatalysisatreason-abletemperaturescanbecomeoverriding;thismayprecludetheapplicationofthesereactionsintarget-orientedsynthesisprogrammes.Inrecentyearstherehavebeensignificantadvancesincatalyticasymmetricmethodsthathaveofferednewopportunitiesforunderexploitedreactionmanifolds.This,coupledwithanincreasedapplicationofdensityfunctionaltheorytorationalizereactivitypatterns,maybepartlyrespon-siblefornewapproachestothecatalysisofelectrocyclic

ChemistryResearchLaboratory,UniversityofOxford,12MansfieldRoad,OxfordOX13TA,UK.E-mail:martin.smith@chem.ox.ac.uk

processes.Inthisarticlewehaveattemptedtodocumentstereocontrolinelectrocyclicreactionsinwhichthediastereo-orenantioselectivityisinfluencedbyachiralcomponent(beitsubstrateorcatalyst).3Thecomplexityandmechanisticambiguityinascribingreactionsaspericyclic(ornot)canmakedeconvolutingtheintimatedetailsthatareresponsiblefortheobservedstereochemicaloutcomechallenging.Wehave,however,attemptedtorationalizethecontrollingelementsintheelectrocyclizationstepwherepossible.Itisnotintendedthatthisreviewbecomprehensive,butratherthatmethodsforcontrollingandinfluencingasymmetryinelectrocyclicprocessesbeoutlinedinthecontextoftheirutilityinsyntheticchemistry.Wehavearrangedthisaccountbyreactionmanifoldinthehopethatthismayenableeasynavigationandreference.

Photochemicalreactions

4pElectrocyclizations(p4s)

Tropoloneethersundergoa4pdisrotatoryphotocyclizationinthepresenceofachiralhosttoaffordnon-racemicbicyclicproducts.Todaetal.haveshownthattheenantioselective

SamThompsonreceivedhisMChemfromExeterCollege,Oxford(2004)spendinghisfinalyearwithBenDavisintheDysonPerrinsLaboratory.HemovedtoStEdmund’sCollege,CambridgeforaPhD(2008)withMartinSmithworkingoncascaderoutestopolycyclicalkaloids.AfterreturningtoOxfordforabriefpostdoctoralstaywithSteveDaviesandAngelaRussell,hetookuphiscurrentpositionasaJuniorResearchSamThompson

FellowatPembrokeCollege,

OxfordandpostdoctoralfellowwithAndrewHamilton,FRS.Hisinterestslieintheuseofnewsyntheticmethodstounder-standbiologicalsystemsandapplicationofthistobiomedicinalproblems.

ThisjournaliscAnthonyCoynereceivedhisBSc(1998)andPhD(2002)fromtheNationalUniversityofIreland,Galway,workingwithRichardButler.HeacceptedanindustrialpositionwithGlaxoSmithKlinebeforereturningtoacademiaasapostdoctoralfellow(2004)withPatGuiryatUniversityCollegeDublin.Afterapost-doctoralstaywithMartinSmithattheUniversityofCambridge(2006–2008)hetookuphiscurrentpositionAnthonyG.Coyne

withChrisAbellatthe

UniversityofCambridge.Hisinterestsarefocusedonfragmentbasedapproachestotargetingprotein–proteininteractions.

TheRoyalSocietyofChemistry2011Chem.Soc.Rev.,2011,40,4217–42314217View Article Online

Scheme1Enantioselectivephotoreactionofatropoloneetherinacrystallineinclusioncomplex.

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022Gphotoelectrocyclizationoftropolonederivativescanbeachievedinthesolidstatebyforminga1:1complexwithanopticallypurealcohol(Scheme1).4–7ThestereochemistryoftheproductisexplainedonthebasisoftheX-raycrystalstructureoftheinclusioncomplex.The4pdisrotatoryphotoelectrocyclizationoccursinthe‘outward’direction(toaffordthe(1S,5R)enantiomer)sincethealter-nativewouldgiverisetoanunfavourablestericinteractionbetweentheo-chlorophenylandethylgroups.Othergroupshaveexploredthephotocyclizationoftropolonederivativesusingdifferentchiralmediaforthecontrolofasymmetry.Ramamurthyetal.examinedtheinfluenceofchirally-modifiedzeolitesforthephotocyclizationoftropolone,9,10andobservedenantiomericexcessesofupto82%.b-Cyclodextrinswerelesseffective,inducingenantiomericexcessesupto33%.11Stereoinductiondirectedbyaremotechiralcentreisaconsiderablesyntheticchallengeinasymmetricphotochemistry;Ramamurthyetal.haveusedconfinementasameanstoamplifysubstrate-controlleddiastereoselectivity.12,13Host–guestcomplexesbetweensubstitutedpyridonesandanachiral‘‘cavitandoxa-acid’’wereirradiatedtoinducephotocyclization,yieldingdiastereomericratiosupto24:1,whilstintheabsenceoftheoxa-acid,thehighestdrwasjust1.0:1.1.

Kaneko,14andScheffer8havebothexploredthephoto-cyclizationof4-benzyloxy-2-pyridonesinthesolidstate,obtainingcyclizedmaterialsinhigheesbutinmoderateyields.

Scheme2Electrocyclizationof2-pyridoneswithachiralhost.

Bachetal.haveexaminedasimilarsolution-phasereactioninthepresenceofachiralhost(Scheme2).15The4pelectrocyclicringclosureofpyridonesinsolutionoccurredwith20–23%eeatÀ201C;theobservedmajorstereoisomerisconsistentwiththemodelproposedbyBachetal.16forthe6pelectrocyclizationofacrylanilides,videinfra.6pAzaelectrocyclizations(p6a)

Todaetal.17demonstratedthatthestereochemicaloutcomeofthephotocyclizationofacrylanilidesto3,4-dihydroquinolin-2(1H)-onescanbecontrolledbyinclusionwithanoptically-activeTADDOL-related18hostcompoundderivedfromtartaricacid(Scheme3).

ThedirectionofconrotatoryringclosurewithintheinclusioncomplexdeterminestheabsoluteconfigurationatC-1,andasubsequentsuprafacial1,5-hydrogenshiftdeter-minesthestereochemistrya-tothelactamcarbonyl.Thisprocessiseffectiveforarangeofsubstratesinuniformlyhighenantiomericexcess.Furtherworkfromthesamegroup19–22has

PeterKnipegraduatedwithanMSciinNaturalSciencesfromDowningCollegeintheUniversityofCambridge(2008)beforemovingtotheUniversityCollegeintheUniversityofOxfordforaDPhilwithMartinSmith.Heiscurrentlyinthethirdyearofhisdoctorateworkingonasymmetricelectrocyclizationandcascadeprocesses.

PeterC.Knipe

MartinSmithreceivedhisBA(1995)andDPhil(1999)fromtheUniversityofOxford,workingwithGeorgeW.J.Fleetonthechemistryofcarbohydrateaminoacids.HemovedtoPembrokeCollegeintheUniversityofCambridgeastheDrapersCompanyResearchFellow,toworkwithStevenV.Ley,CBEFRS.In2003hebeganhistenureasaRoyalSocietyUniversityResearchFellowintheDepartmentofChemistryinMartinD.Smith

Cambridgebeforemovingto

OxfordasaUniversityLecturerin2008.Heleadsasyntheticorganicchemistrygroupwithwide-ranginginterestsinsynthesis,structureandasymmetriccatalysis.

Thisjournalisc4218Chem.Soc.Rev.,2011,40,4217–4231TheRoyalSocietyofChemistry2011View Article Online

Thermalreactions

4pElectrocyclizations(p4a)

TheNazarovreaction.The4pelectrocyclizationofdivinylketonestogivecyclopentenones—theNazarovreaction—isprobablythemostextensivelyinvestigatedasymmetricelectrocyclictransformation.25–33Thethermalreactionpro-ceedsviatheconrotatorymode34,35andcanberenderedasymmetricinthepresenceofachiralauxiliaryorasymmetriccatalyst.Denmarketal.employedachiralsilanetotransferasymmetryinaNazarovreaction(Scheme5).36–38Treatmentofanenantiomericallyenricheddivinylketonebearingab0-stereogenicsiliconsubstituentwithFeCl3generatedapentadienylcationthatunderwentconrotatory4pringclosuretoaffordanoxyallylcation.Inthistrans-formation,theconformationoftheintermediatecationisdictatedbythepreferenceoftheC–Sis-bondtolieperpendi-culartotheplaneofthepentadienylsystem.Onlytheanti-productwasobserved,theauthorsreasoningthatsyn-conrotationwouldplacetheelectron-richSi–Cbondinanequatorialpositionorthogonaltothep*orbital,precludinghyperconjugativestabilization.Concomitantsilicongroupeliminationgavethetricyclicringsystemin58%yieldwithcompletetransmissionofchiralinformationfromthestartingmaterial.

Pridgenetal.employedtheEvanschiraloxazolidinoneauxiliarytoinfluencestereoselectivityintheNazarovcyclizationofalkylidene1,3-dicarbonylcompounds.39BothLewisandBrønstedacidscatalyzedthistransformationandsurprisinglygaveroughlyequivalentdiastereoselectivities,suggestingthatLewisacidchelationmaynotberesponsibleforthestereoinduction.Theirbestresultswereachievedusingmethanesulfonicacid,givingan85:15mixtureofC3epimers(Scheme6).

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GScheme3Enantioselectivephotocyclizationofanacrylanilideinacrystallineinclusioncompound.

followedinwhichthestructuresoftheinclusioncomplexeshavebeenstudiedbyX-raycrystallography,therangeofsubstratesextendedwithyieldsashighas70%,withupto98%ee.

Solution-phaseenantioselective6p-photoelectrocyclizationofanacrylanilidemediatedbyachiralhostwasstudiedbyBachetal.16Theabsoluteconfigurationatcarbonatom1isestablishedinthephotocyclizationstep;amodelforthedifferentiationofenantiotopicfacesisshownbelow(Scheme4).Uponconrotatoryringclosure,thecyclohexeneringcaneitherturninthedirectionofthetetrahydro-naphthaleneoritcanmoveaway,andindoingsoopenitsSi-facetoattackfromthearylring.Thelattermovementappearstobethemoststericallyfavourable,givingtheproductbearingtheobservedstereochemistryasamajorproductboundtothehost.

PhotocyclizationintolueneatÀ551Cyieldeda2.7:1.0diastereomericmixtureofproductsinmoderateee.Relatedsolution-phasephotoelectrocyclizationswerereportedbyNinomiyaetal.23andScaianoetal.,24albeitwithlowenantioselectivities.

Scheme4Stereocontrolledconrotatoryphotocyclizationofanacrylanilideinacrystallineinclusioncomplex.Scheme5AsymmetricNazarovcyclizationwithasiliconchiralauxiliary.

ThisjournaliscTheRoyalSocietyofChemistry2011Chem.Soc.Rev.,2011,40,4217–42314219View Article Online

Scheme8Trauner’scatalyticasymmetricNazarovcyclization.

Scheme6Auxiliary-controlledNazarovcyclizations.

Flynnetal.havereportedasimilarreactionusingthechiralphenyloxazolidinonechiralauxiliaryandmethanesulfonicacidatÀ781C.40Thekineticsyn-productwasformedin73%yieldbutonsustainedexposuretoaLewisacidatroomtemperaturethethermodynamicallymorestableanti-productwasformedin78%yield.Sincebothenantiomersofthephenyloxazolidinoneauxiliaryarereadilyavailable,thisallowsaccesstoallfourstereoisomersofthecyclopentenoneproduct.Theobservedstereochemistryisjustifiedonthebasisofap-stackinginteractionbetweenthephenylandoxazol-idinonecarbamatefavouringonesenseofconrotation.41Tiusetal.havedemonstratedaxialtotetrahedralchiralitytransferthroughthecyclizationofachiralallenylketone.42Theabsolutestereochemistryofthecyclopentenoneisderivedfromaconrotatoryringclosureinvolvingcounterclockwiserotationofthealkene(Scheme7).

ThehighstereoselectivityofthistransformationisaconsequenceoftheconrotationoftheR3groupawayfromthealkene.Inadistinctapproach,allenepyranosederivatives43–46andcamphor-derivedauxiliaries47–49havebeenusedtocontrolselectivityinthecorrespondingcyclopentenylationreactions.Thescopeofthisreactionhasbeenexpandedtoawiderangeofsubstitutionpatternsandheteroatoms.Hoppeetal.haveusedsimilarmethodologyforthesynthesisof5-alkylidine-2-cyclopentenonesfromchiralallenylcarbamates.50–52Trauneretal.disclosedthefirstcatalyticasymmetricvariantoftheNazarovcyclization,employinga-oxygenateddienonesfortheirpropensityforbidentatechelation.53,54Treatmentofthesematerialswith20mol%Sc(OTf)3/PyBOXcatalystaffordedtricyclicproductsingoodee(Scheme8).

AggarwalandBelfieldhavedisclosedasimilarstoichio-metricandcatalyticasymmetricprocessusingCu–PyBOXcatalysts(Scheme9).55Treatmentofdienonessubstitutedwithesterorketonegroupswithcopper(II)bromideandbisoxazoline-derivedligandsaffordedcyclopentenoneproductsingoodtoexcellentenantiomericexcess.ThestereochemicaloutcomeofthesereactionsisconsistentwithamodelwherestericinteractionsbetweenR2andR3,andtheisopropylgroupsontheliganddistorttheplaneofthecationicdivinylketoneintermediatetofavouronemodeofconrotation.Itwasfoundthatstoichio-metricamountsofthecatalystwererequiredinordertoobtainhighyields.Frontieretal.havefoundthatiridium-basedLewisacidsoutperformothersuchcatalysts,extendingthescopeoftheNazarovreactiontocyano-andnitro-containingsubstrates,andallowingcatalystloadingtobedroppedto10mol%,althougheesofgreaterthan15%havenotyetbeenachieved.31Inrelatedwork,Maetal.havedevelopedacatalyticasymmetrictandemNazarovcyclization—electrophilicfluorination(Scheme10).56Inthisprocess,thedirectionofconrotationiscatalyst-controlled(presumablyviaamodelsimilartothatreported

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GScheme7AxialtotetrahedralchiralitytransferinanallenylNazarovcyclization.

Scheme9Aggarwal’senantioselectiveNazarovcyclization.

4220Chem.Soc.Rev.,2011,40,4217–4231ThisjournaliscTheRoyalSocietyofChemistry2011View Article Online

Scheme10AsymmetricNazarov-fluorinationreaction.

byTraunerandAggarwal)intheelectrocyclicstep.Sub-sequenttrappingofthemetal-boundenolatewithanelectro-philicfluorinesourceaffords1-indanonesinupto95%yieldand95%ee.Thisreactionalsoproceedswithexcellentdiastereoselectivity,creatingtwonewstereocentreswithupto49:1anti:synstereochemistry.

Inadditiontofurtherworkwithscandium(III)57andcopper(II),33othermetalsincludingnickel(II),58iron(II)andcobalt(II)32havebeendemonstratedtoinduceasymmetrywhenusedincombinationwithnon-racemicC2-symmetricligands.Ruepingetal.havereportedanorganocatalyticasymmetricNazarovcyclizationusingaBINOLphosphateBrønstedacidcatalyst,59andsubstratessimilartothoseemployedbyTrauner(Scheme11).

Thehighestenantioselectivitywasobtainedinchloroformat01Cwith2mol%oftheBINOLphosphatecatalyst.Thisaffordeduptoa9.3:1.0mixtureofsyn:antidiastereomersandeesupto93%.Thecatalyticcycleforthisreactionwasenvisagedtoinvolveprotonationofthedivinylketonetoaffordanintermediatechiralionpairwhichcouldundergo4pelectrocyclicringclosure.SubsequentprotonationofthecyclicenolateresultsintheformationofcyclopentenoneandregenerationoftheBrønstedacidcatalyst.

Tiusetal.haverecentlyreportedbothstoichiometricandcatalyticexamplesofa-ketoenonecyclizations.60,61Chiralnon-racemic1,2-diaminesgiveNazarovproductsingoodyieldandexcellenteewhenusedstoichiometrically.Thedirectionofconrotationisthoughttobecontrolledbyanequilibriumbetweenenamine–iminiumions(Scheme12).Acid-catalyzedliberationofthediaminefromitsboundformisrequired,suggestingthatproductinhibitiontakesplace,preventingcatalyticturnoverandleadingtolongreactiontimes.

Non-covalentbifunctionalthioureaorganocatalystsallowedacatalyticcycletobeestablishedwithdiketoestersubstrates(Scheme13).61Themechanismappearstobecooperative,

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GScheme12Enamine–iminiumionscontrolledNazarovcyclization.

Scheme13Thiourea-catalysedNazarovcyclization.

involvingasubtlebalancebetweenBrønstedacidactivationoftheketoneandbasicactivationoftheenolicester.Thesenseofconrotationmaybeexplainedbyselectionofthelowestenergytransitionstateofthetwopossiblehelicaldiastereo-mericcomplexes;theauthorssuggestthatthecatalystinvokesatorsionoftheC3–C4bond,stabilizingtheintermediatethatleadstotheobservedproduct.

Tiusetal.’sstudiestowardsasymmetricNazarovreactionshavealsoledtoanexampleofanunusualaza-Nazarovprocess,proceedingwithveryhighenantiomericexcessinthepresenceofadiaminetriflatecatalyst.62TheStaudingerreaction.Sincethediscoveryofpenicillinandelucidationofitsstructure,thechemistryofb-lactamshasbeenextensivelystudied;63–76theStaudingerreactionoffersaneffectiveanddirectapproachtotheirsynthesis.77Thetrans-formationgenerallyinvolvesthenucleophilicattackofanimineonaketenetogiveazwitterionicintermediate,whichundergoesa4pelectrocyclicringclosuretoaffordtheb-lactam.Mechanisticandtheoreticalstudieshaveshownthattheproductstereochemistryisdictatednotbystericeffectsbutbyrotationalpreferencesintheelectrocyclicringclosure.Itisacceptedthattheinitialnucleophilicattackgenerallyoccursexo-totheketenesubstituent,hencetheobservanceofbothcis-andtrans-lactamsisattributedtoimineisomerization,78,79bothbeforeandafterformationofthezwitterionicinter-mediate,with(E)-iminesleadingtocis-lactamsandvice-versa(Scheme14).

TheelectronicpropertiesofthesubstituentsattheR1andR2positionshavebeenshowntohaveasignificanteffecton

Chem.Soc.Rev.,2011,40,4217–42314221Scheme11Brønstedacid-catalysedasymmetricNazarovcyclization.

ThisjournaliscTheRoyalSocietyofChemistry2011View Article Online

Scheme14ProposedmechanismoftheStaudingerreaction.

thestereochemicaloutcomeofthereactionbyinfluencingtherelativeratesofisomerizationversusdirectcyclization.78,80Forexample,electron-donatinggroupspositionedatR1tendtofavourcis-productssincetheyacceleratethecyclizationoftheinitiallyformedzwitterionrelativetoimineisomerization;theoppositeisobservedwhenelectron-poorsubstituentsareused.Theoriginsofstereochemicalcontrolinthereactionhavebeenextensivelyexaminedusingtheoreticalandmecha-nisticprobes.78–87IthasalsobeenproposedthattheStaudingerreactionisnotpericyclic,andshouldberegardedasanintramolecularMannich-typeprocess.78RecentlyCossıoetal.87haveshownthatthecyclizationofthezwitterionicintermediatemaybeconsideredasaninteractionbetweentheunperturbedenolatep(HOMO)andiminiump*(LUMO)orbitals;thisnucleophilicadditionisfacilitatedbyanin-phasecouplingoftheorbitalswhichnecessarilyleadstoconrotatorycyclization.Althoughtheproblemofwhetherthereactionispericyclicornotremainsunresolved,thestereospecificconrotatorynatureofthereactionjustifiesitstreatmentinananalogousmanner.

Ingeneral,theabsolutestereochemistryoftheb-lactamsformedmaybecontrolledinthreeways:(i)theinclusionofchiralgroupsorauxiliariesontheketene;(ii)chiralgroupsorauxiliariesontheimine;or(iii)asymmetriccatalysis.Notable,exemplaryandrecentreactionsintheseareasarepresented.(i)Chiralgroupsontheketene.EvansandSjogrenused(S)-phenyloxazolidylacetylchlorideasachiralketenesynthoninanauxiliary-controlledasymmetricStaudingerreaction(Scheme15).88,Thesetransformationsproceedinexcellentyield(upto90%)andaffordexclusivelycis-productswithupto97:3dr.TheuseofEvanschiraloxazolidinone-substitutedketenesasameanstocontrolasymmetryintheStaudingerreactioniswell-established;thishasbeenexploitedbyanumberofgroups90–97andcanbehighlydiastereoselective(>99:1dr).97Panunzioetal.havereportedatrans-selectiveStaudingerreactioninvolvingthesameketeneprecursorwithtrimethyl-silylimines;98thisisconsistentwiththemodelproposedinScheme14,withthe(Z)-imineintermediateleadingexclu-sivelytothetrans-b-lactamasamixtureofdiastereomers(Scheme16).Whilstthereactiondidproceeduncatalyzedat

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GScheme16Lewisacid-catalysedStaudingerreaction.

elevatedtemperatures(1001C),significantrateaccelerationwasobservedinthepresenceofaLewisacidcatalyst.99Thediastereoselectivityisproposedtobetheresultofacomplexseriesofinter-andintramolecularLewisacid–baseinteractions.Intheuncatalysedprocess,internalcoordinationoftheN-iminolonepairtothesiliconcausesincreasedmolecularrigidity.SubsequentconrotatorycyclizationisdirectedbythebulkoftheEvansauxiliarytogivethecorrespondingtrans-lactamasthemajorproduct.UseofanexternalLewisacidcausedareversalofthisselectivity,whichtheauthorssuggestisduetocoordinationoftheN-iminolonepairtotheboron.Thiswouldreducetheintramolecularinteraction,increasingrotationalfreedomalongtheC–Nbondandallowingformationofthealternativetrans-lactam.How-ever,theauthorsconcedethattheirproposedmechanismisnotgeneralsinceitfailstoexplainsomeanomalousresults,andconcludethatthecomplexinterplayofweakinteractionsmakesthediastereoselectivitydifficulttopredict.Althoughtheoutcomeofthisreactionhasnotbeenadequatelyexplained,itssignificanceliesintheconsiderablerateaccelerationobservedunderLewisacidcatalysis,suggestingthatasymmetricLewisacidcatalysismaybeviable.

Othercommonchiralpool-derivedauxiliarieshavealsobeenusedtoinduceasymmetry;recentexampleshaveemployedsugars100,101tartaricacid,102,103and(À)-ephedrine.104Whilstbroadlyapplicable,thesemethodsarelimitedtonon-enolizableiminesduetosidereactionsinvolvingiminium–enaminetautomerization.ThiscanbeelegantlycircumventedbyemployingN-silylimines,astheseallowisolationofasilylketenehemiaminalintermediate.99,105,106(ii)Chiralityontheimine.Enantiomerically-enrichediminesderivedfrombothchiralaldehydesandamineshavebeenshowntobeeffectiveincontrollingthediastereoselectivityoftheStaudingerreaction.Anumberofchiralamineshavebeenutilizedtothisend,includingthosederivedfrom

107108D-threonine,L-threonine,phenylethylamine,109,110111L-alanine,and(2S,5S)-2,5-hexanediol.112,113ThelastexampleisnoteworthysinceitemploysachiralhydrazoneyieldingN-aminob-lactamswithveryhighdiastereoselectivityandaninterestingtemperature-dependence(Scheme17).

ThestereoselectivityobservedatroomtemperaturemaybeexplainedbythelargeCH2OBngroupontheiminemovingtoavoidthestericclashwiththemethylgroupsontheauxiliary.Theauthorsrationalizethetrans-selectivityatelevated

ThisjournaliscScheme15Evansauxiliary-controlledStaudingerreaction.

4222Chem.Soc.Rev.,2011,40,4217–4231TheRoyalSocietyofChemistry2011View Article Online

Scheme17D-Threonine-derivediminesintheStaudingerreaction.

Scheme19TheStaudingerreactionofchromiumtricarbonyl-substitutedimines.

temperaturesonthebasisofanaddition–eliminationmecha-nismcausingimineisomerization.

TheStaudingerreactionofiminesderivedfromchiralaldehydeshasalsobeenextensivelyexamined.Particularlyhighdiastereoselectivitiesareobtainedwhenthealdehyde(andconsequentlytheimine)possessesaheteroatominthea-position.IthasbeendemonstratedthatthisisduetoastabilizinginteractionbetweentheenolateHOMOandC–Xs*orbitalwhichismorepronouncedinoneofthediastereo-merichelicaltransitionstates.85,114Themostcommonlyemployedchiralaldehydesarederivedfromsugars,115–119aminoacids85andsyntheticchiralepoxyaldehydes.120Thelevelsofstereocontrolcanbenear-perfect,asdemonstratedbyDeshmukhetal.,whoemployedanisosorbide-derivedaldehyde(Scheme18).101DelButteroetal.havedescribedadiastereoselectivesynthesisofb-lactamsusingtheStaudingerreactionofaniminederivedfromthechromiumtricarbonylcomplexofanarylaldehyde,withketenes.121Thereactiongavethecorrespondingcis-b-lactamin98%yieldasasinglediastereo-isomer,andsubsequentphotolysisofthechromiumcomplexyieldedtheopticallypurelactamin95%yield(Scheme19).

Theabsolutestereochemistryoftheproductisconsistentwithatransitionstatewherethemethoxygroupisorientedawayfromthebulkofthemolecule.Subsequentcyclizationthenoccurswiththechromium-complexedarenerotatingoutwards,leadingtotheobserveddiastereomer.

(iii)Catalyticasymmetricmethods.Therehasbeensignifi-cantinterestincatalyticasymmetricmethodstoformcis-b-lactams.Lectkaetal.andFuetal.havereportedelegantandefficientvariantsusingnucleophiliccatalysis,122,123whilstYeetal.andSmithetal.haveindependentlydevelopedNHC-catalyzedprocesses.124,125ThemechanismsforthesereactionsdifferfromthegeneralprocessoutlinedinScheme14andhencedonotinvolveelectrocyclicprocesses.

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022G6pElectrocyclizations(p6s).Notethat6pelectrocyclicreactionsasacomponentof8p–6pcascadesarediscussedseparately,videinfra.

[1,5]Aza-electrocyclicmanifold.Inoneofthefewasym-metric[1,5]electrocyclicreactions,VeenstraandSpeckamp126foundthatthebase-catalyzed1,5-electrocyclizationofaldiminesfromo-aminophenylsuccinimideinthepresenceofachiralb-aminoalcohol(suchas(–)-mentholand(–)-borneol)yieldedchiralindolinesin17to31%ee(Scheme20).

TreatmentofthealdiminewithbutyllithiuminthepresenceofN-methylephedrinegavethedihydroindolein50%yieldand>95%ee.ThiswasrationalizedonthebasisoftheZ-imineundergoingadisrotatoryelectrocyclizationviaatransitionstateorganizedthroughhydrogenbondingandchelationinvolvingtheN-methylephedrine.Thissystemdisplayssignificantsensitivitytosmallstructuralvariationsinsubstrateandcatalyst.127Smithetal.128havedevelopedthismanifoldintoanorgano-catalyticasymmetricreactiontolerantofabroadrangeofsubstituentsonboththearylringandiminegroup.Underphase-transferconditionsemployingacinchona-derivedcatalyst,functionalizedindolineswereformedinexcellentyieldandenantiomericexcess(Scheme21).Thesenseofdisrotationmaybeexplainedbytight-ionpairingofthe

Scheme18DiastereoselectiveStaudingerreactionemployinganiso-sorbide-derivedauxiliary.

Scheme20Asymmetric[1,5]-electrocyclization.

ThisjournaliscTheRoyalSocietyofChemistry2011Chem.Soc.Rev.,2011,40,4217–42314223View Article Online

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GScheme21Catalyticasymmetric6pelectrocyclization(oneestergroupomittedforclarity).

enolateandquaternaryammoniumcation,inwhichonefaceoftheenolateisselectedandthusthedirectionoforbitalrotationinthering-closurecontrolled.MullerandListhaveshownthatchiralBrønstedacidscatalyzethecyclizationofa,b-unsaturatedhydrazonestopyrazolinesinexcellentyieldandhighenantiomericexcess.129Acid-catalyzedisomerizationofthelinearhydrazonetothereactive(Z)-s-cis-configurationisfollowedby[1,5]-electrocy-clizationofachiralhydrogen-bond-stabilizedionpair.Sub-sequentisomerizationanddeprotonationaffordedthethermodynamicallymorestablepyrazole.Alkylationoftheresultingpyrazolesinahighlydiastereoselectivefashionhasalsobeendemonstrated.130ItispossibletoreconciletheobservedenantioselectivitybyanalogytothemodelproposedbySimonandGoodmanfortheBINOL–phosphoricacid-catalyzedStreckerreaction.131ChelationofthehydrazonetotheC2-symmetricacidactivatesthesubstrateandsubsequentdisrotatoryelectrocyclizationoccurswiththelargearylgroupmovingawayfromthecatalystbulk(Scheme22).

ThesyntheticutilityoftheproceduresofSmithandListarebothextendedviaone-potpreparationoftheelectrocyclicprecursorsandcyclization.Thisallowsformationofindolinesandpyrazolesdirectlyfromarylaminesandketones,respectively.

Hexatrienemanifold.Okamuraetal.havedescribedaninterestingexampleofastereospecifictandemcentre-axis-centrechiralitytransfer,inwhicha[2,3]-sigmatropicshiftisfollowedbydisrotatarycyclization.132Uponformingapropargylicsulfenateester,asigmatropicrearrangementtakesplacetogiveanallenylsulfoxidestereospecifically(withrespecttoallenegeometry).Thesenseoforbitalrotationinthesubsequentelectrocyclizationappearstobeunidirec-tional,withcompletetransmissionofstereochemistrytotheproduct(Scheme23).

Substratecontrolofasymmetryhasalsobeenobservedinthe6pelectrocyclizationofcamphor-derivedtrienes.133,134Magomedovachievedthisbytheinsituformationoftherequisitetrieneundersoftenolizationconditions;useofthebulkyMADLewisacidwithNMPgavethedesiredcyclicenonewithcompletediastereoselectivity(Scheme24).Theobserveddiastereomericoutcomeisconsistentwithatransitionstatethatminimizesthedevelopingstericclashbetweenthephenylandbridgeheaddimethylgroups.

Otherchiralpoolmoleculeshavebeenusedtocontroltheasymmetryofelectrocyclicreactions.Akeystepintheasymmetrictotalsynthesisofpotentsodiumchannelblockertetrodotoxinwasa6pelectrocyclicreactiondirectedbytheadjacentcarbohydrate-derivedbicycle(Scheme25).135,136Theauthorsobservethatthereactionishighest-yieldingwhenX=SnBu3,postulatingthatthisisduetochelation,withtheneighbouringfreehydroxylgroupfavouringthereactivetransitionstate.SuchchelationisabsentwhenX=HandthereactiveconformationisactivelydisfavouredwhenX=SiEt3duetoallylicstrain.Thereactiondemon-stratesthatstereoselectivityinahexatrienesystemmaybecontrolledbysuitablesubstitutionatthe1-position.Hsungetal.haveexploitedthisinhighlydiastereoselective6p

Scheme23Allenyldiene6pelectrocyclization.

Scheme22Brønsted-acidcatalysed6pelectrocyclization.Scheme24Lewisacid-catalyseddiastereoselective6pelectrocyclization.

4224Chem.Soc.Rev.,2011,40,4217–4231ThisjournaliscTheRoyalSocietyofChemistry2011View Article Online

Scheme28Catalyst-controlledenantioselectivecarba-6pelectro-cyclization.

Scheme25Cyclizationofabridgedbicyclichexatrieneyieldingasinglediastereoisomer.

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GelectrocyclizationsthroughtheuseofanEvanschiraloxazo-lidinoneplacedatthehexatriene1-position(Scheme26).137,138Themajorproductobservedisconsistentwithadisrotatorypathwaywherebythelargehalogenmovesupwards(asdrawn),avoidingunfavourablestericinteractionswiththebenzylgroup.

Inthepalladium-catalyzedpolycyclizationofenediynes,TrostandShiobservedcompletediastereoselectivityinthecyclizationofaninsitugeneratedhexatriene(Scheme27).139Disrotationoccursexclusivelyinthedirectionminimizingtransitionstatetorsionalstrainbetweenthelargesilylgroupandtheadjacentring;inthefavouredcasetheOTBSgrouptwistsawayfromthemalonate-substitutedfive-memberedring.Trauneretal.havedemonstratedelegantlythatthethermalelectrocyclizationofhexatrienesystemswithacarbonylgroup

Scheme29Electrocyclizationofachromiumketenecomplex.

atthe2-positionmaybeacceleratedbytheadditionofLewisacidcatalysts.140AfterextensivescreeningofchiralcatalyststhePyBOXcatalystsystemusedsuccessfullyintheNazarovreaction53,54yieldedthehighestlevelsofasymmetricinduction,141giving57–77%eewhenusedstoichiometricallyinthepresenceof2,6-di-tert-butyl-4-methylpyridineanddimethylzirconoceneindeuteratedtetrachloroethane(Scheme28).

Wulffetal.haveinvestigatedtheelectrocyclicringclosureofmetal-complexedvinylketenes(Scheme29).142Onthebasisofearlierwork143theauthorspostulatethatformationofthechromiumketenecomplexinsituisstereospecific,andthattheobserveddiastereoselectivitiesareduetoaselective6pelectro-cyclization.Themajordiastereomerisformedfromanupwardrotationoftheinwardmethylgroup;downwardrotationisapparentlydisfavouredduetoseverecloseinteractionswiththemetalanditsligands.

[1,6]Azaelectrocyclization.Hsungetal.haveextensivelyinvestigatedstereocontrolinthep6sazaelectrocyclizationmanifoldthroughaseriesofelegantstudies.144–152Insitugenerated1-azatrienesundergoefficientelectrocyclizationenrouteto1,2-dihydropyridines,andchiralsubsituentsontheazatrienenitrogenortheC-terminusofthetrieneareeffectiveincontrollingthestereochemistryoftheelectrocyclicprocess(Scheme30).

InthecaseofachiralC-terminalsubstituent,theobservedselectivityisaresultofminimizationofallylicstrainintwopredominantconformationsbyplacingthelargestgroupperpendiculartotheplaneoftheC-terminalvinylstrand(Scheme31).153Thedisrotatorycyclizationispresumedtoproceedfromthemorestableopen-chainconformation,withselectivitydirectedbythedevelopingstericinteractionbetweentheRLandN-Bn

Chem.Soc.Rev.,2011,40,4217–42314225Scheme26Diastereoselectivehexatriene6pelectrocyclization.

Scheme27Allylicstraindirectedhexatrieneelectrocyclization.

ThisjournaliscTheRoyalSocietyofChemistry2011View Article Online

Scheme30Auxiliary-controlled6pazaelectrocyclization.

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GScheme326pElectrocyclizationdirectedbyachiralN-substituent.

Scheme31ModelforobservedstereochemistrydirectedbyachiralgroupattheC-terminusoftheazatriene.

groups.Anincreaseinthesizeofthenitrogensubstituent,andtheuseofasix-memberedring(withagreaterinternalanglethanthepicturedg-lactoneandthusagreaterallylicstrainrelativetothegrouponnitrogen)gavethehighestdiastereo-selectivity(92:8).Reversibilityunderthesereactionconditionswasdemonstratedbythermalequilibrationexperiments150,154andhencetheobserveddiastereoselectivityispresumablyaconsequenceofbothrotationalpreferencesintheelectrocyclicstepandthermodynamicstability.

Asimilarexplanationforselectivityisofferedwhencontrolisdictatedviaachiralnitrogensubstituent(Scheme32).146,147,150,152‘Inward’rotationoftheC-terminalvinylstrandtoavoidclashingwiththearylsubstituentontheephedrine-derivedauxiliaryleadstothemajordiastereoisomer.

Katsumuraetal.155–158utilizeahighlyeffectiveStille/6p-azaelectrocyclizationapproachtogeneratefunctionalizeddihydropyridines.Thissequenceisdirectedbyanindanolauxiliaryafterasubsequenttautomerizationandnucleophilicattacktoformtherequisitehemiaminalether(Scheme33).Amodelfortheobserveddiastereoselectivityinthisprocessreliesonhydrogenbondingoftheindanetodirecttheorientationoftheauxiliary.Stericinteractionsbetweentheisopropylgrouponthearomaticringandtheformingdihydropyridinedisfavour‘upward’rotationofH(asindicated)andexplaintheobserveddiastereoselectivity.Ithasbeendemonstratedthatthestereochemicaloutcomeofthereactionisakinetic,notthermodynamiceffect.Theeffectivenessofthis

4226Chem.Soc.Rev.,2011,40,4217–4231Scheme33Highlydiastereoselectiveazaelectrocyclization.

procedureisreflectedinitssuccessfulapplicationtothesynthesisofarangeofnaturalproducts,155–163includingarecenttotalsynthesisof(À)-20-epiuleine.1[1,6]Oxaelectrocyclization.Hsunghasextendedtheworkofhisgrouponcarba-andazaelectrocyclizationtoencompasstheoxaelectrocyclizationmanifold.Ithasbeendemonstratedthatthereversibilityoftheoxaelectrocyclizationprocessusuallyplaysadominantroleindeterminingthefinaldiastereoisomericoutcomeofthesereactions,165thoughrotationalselectivitymayalsocontributeinsystemsunderkineticcontrol.Substratesforp6soxaelectrocyclizationmaybegeneratedinsituthroughthecondensationofpyronederivativeswithaldehydeoriminiumelectrophilesinwhathasbeentermedaformal[3+3]cycloadditionreaction.165,166Preformeda,b-unsaturatediminiumsaltsmaybeemployedtosolvetheproblemsofcompeting1,2-versus1,4-addition,andC-versusO-addition.Thisallowedfortheconstructionofoxo-spirocycleswithmoderatediastereoselectivities(Scheme34).167Amodeltoexplaininconsistenciesbetweencalculatedthermodynamicstabilitiesandobserveddiastereoisomericratioswasproposed,basedoncompetingallylicstrainand1,3-diaxialinteractions.ForsmallR1groups,itwasproposed

ThisjournaliscTheRoyalSocietyofChemistry2011View Article Online

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GScheme34Moderatelydiastereoselectiveoxaelectrocyclization.

Scheme35Auxiliaryapproachtoasymmetric8pelectrocyclization.

thatequilibrationbetweenaxialandequatorialsubstituentsshouldfavortheintermediatewithminimumA1,3strain,andequatorialapproachoftheoxygenatomduringtheringclosurewouldleadtothemajorisomer.Similartrans-formationswithotherelectrophileshavebeenreported,168–171andanapproachinwhichthesourceofchiralityiscarbohydrate-derivedhasalsobeendescribed.1728pElectrocyclizations(p8a)

8p/6pElectrocyclizationcascades.8pElectrocyclizationsarecommonlyfollowedbya6pelectrocyclization,sincethe8preactionnecessarilyformsatrienewiththecis-stereochemistryrequiredforthe6pevent.Thiscascadeelectrocyclicapproachisexploitedinnumerousnaturalproductsynthesesincludingtheendiandricacids,173–179immunosuppressantpolyketides(À)-SNF4435Cand(+)-SNF4435D180–184andshimalactones.185,186Biomimeticstudiessuggestthatotherpolypropionatesareproducedfromlineartetraenesviaasimilarcascadeofelectrocyclicreactions.183,184,187Theeffectsofsubstituentsonthediastereoiomericratiosobservedintetraene–cyclooctatriene–bicyclooctadienecyclizationsarenoteasilyrationalized.182ParkerandWang188investigateddiastereoselectivityinanauxiliary-controlled8pelectrocyclizationthroughan8p–6pcascade(inwhichthe6pcomponentwasknowntocyclizeinastereoselectivemanner).183,184,187Aseriesofchiralauxiliary-bearingtetraenicesterswereassembledusingaStillecouplingandtheirinsituelectrocyclizationtoformthecoreringsystemof(À)-SNF4435Cand(+)-SNF4435Dwasinvestigated(Scheme35).ThetandemStillecoupling–6p/8pelectrocyclicsequencegavecombinedyieldsforthediastereomersofbetween30and40%andamodestdiastereoselectivityforthe8pelectrocyclizationofupto4:1(dependingontheauxiliaryemployed).

Thediastereoselectivitymayberationalizedthroughconsiderationofthehelicalconformationsofthe8pelectro-cyclizationtransitionstates.Inthiscase,theeffectoftheauxiliaryisnotsufficienttodifferentiatesignificantlybetween

Thisjournaliscthes-cis,synands-trans,synconformers,whichresultsinrelativelymodestandextremelysubstrate-sensitivediastereoselectivity.BeaudryandTrauner180havedisclosedaone-potStille/6p–8pelectrocyclizationcascade,yieldinga3:1mixtureofenantiomericallypurepolyketidesinanoverallyieldof%(Scheme36).

Theratioofdiastereomersispostulatedtoreflectthetorquoselectivityoftheconrotatory8pstep(whichisgovernedbythea-methoxy-g-pyronesubstituent),ratherthanthedisrotatory6pstage.1848p–6pCascadeshavethepotentialtoformstructurallyremarkableframeworksincludingfenestrenes,asdemonstratedbySuffertetal.1,190Cis-reductionofthealkyneusingnickelborideatroomtemperatureyieldedthecorrespondingfenestreneasasingleisomerinupto93%yield.Subsequentmechanisticinvestigationshavedeterminedthatthefenestreneformedisthekineticproduct;exposureofthealkynetothesamereducingconditionsat701C,orthefenestrenetomicrowaveirradiationledtothethermodynamicanti-cyclooctatriene(Scheme37).

Thisprocessisindicativeoftheveryhighlevelsofstereo-controlpossiblebycascadeelectrocyclization,andelegantly

Scheme36Diastereoselective8pelectrocyclizationinthetotalsynthesisofSNF4435C&D.

TheRoyalSocietyofChemistry2011Chem.Soc.Rev.,2011,40,4217–42314227View Article Online

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GScheme39Chelationcontrolin8pelectrocyclization.

Scheme37Fenestrenesynthesisviacascadeelectrocyclization.

demonstratestheimpactofapplyingkineticorthermo-dynamicreactionconditions.

8pElectrocyclization.Paquetteetal.haveexaminedtheadditionoftwoalkenylanionstoasquarateester,inwhichaconrotatory4pringopeningofthecyclobutenedialkoxidegeneratesadoublycharged,octatetraenylintermediate.191Theresultantchiralhelicalpolyolefinicintermediatesequilibrate,

withthestereochemicaloutcomeofthesubsequent8pconrotatoryelectrocyclizationdeterminedbytheratesofclosureofthesematerials.Suitablesubstitutionononeofthealkenylanionscandestabilizeoneoftheseintermediatesanddiastereoselectivityisthereforeaconsequenceofprefer-entialcyclizationofthelower-energyhelix(Scheme38).

Positioningofamethoxygrouponthecyclopenteneledtominimalstereocontrol(drE1.1:1.0),howevertheauthorsfoundthatinclusionofabulkygroupattheR0positionaffordedthecyclizedproductwithcompletediastereoselectivity;theypostulatethatthemethoxygroupaloneistoodistantfromthebondingterminiofthetetraenetoexertsufficientcontrol.192Theysubsequentlyfoundthatremotestereo-inductioncouldbeachievedthroughtheuseofmultiplechelatingheteroatoms;193useofachiralaminenucleophilesufficientlyfavouredonehelicalintermediatetoyieldamodesteeof35%afterb-eliminationoftheauxiliary(Scheme39).Thismethodologyhasalsobeenutilizedinthesynthesisofseveralnaturalproductsincludinghypnophilin,coriolin,andceratopicanol.194,195Conclusionandperspectives

Thisreviewdemonstratesthatsignificantprogresshasbeenmadeincontrollingthestereochemicaloutcomeofelectro-cyclicreactions.Forsomereactions—notablytheNazarovcyclization—therearemanyelegantsubstrateorcatalyst-controlledasymmetricprocesses.Newcatalyticmethodshaveledtorecentdevelopmentsin6pelectrocyclizations,butsuccessinthesemanifoldsispredominantlydependantonspecificallyengineeredsubstrates.Assuch,trulypracticalandgeneralcatalyticasymmetricelectrocyclizationmethodsarestillelusive,butthisgoaloffersopportunitiesforthedevelopmentofnewcatalyticapproachesforthecontrolofundiscoveredorunoptimizedreactionmanifolds.

Acknowledgements

WearegratefulforsupportfromtheRoyalSociety(foraURFtoMDS),theEPSRCandGSK(foraCASEawardtoST)andPfizer(foraCASEawardtoPCK).TheEuropeanResearchCouncilhasprovidedfinancialsupportundertheEuropeanCommunity’sSeventhFrameworkProgramme(FP7/2007–2013)/ERCgrantagreementno.259056.

ThisjournaliscScheme38Octatetraene8pelectrocyclicringclosures.

4228Chem.Soc.Rev.,2011,40,4217–4231TheRoyalSocietyofChemistry2011View Article Online

References

1R.B.WoodwardandR.Hoffmann,J.Am.Chem.Soc.,1965,87,395–397.

2C.M.Beaudry,J.P.MalerichandD.Trauner,Chem.Rev.,2005,105,4757–4778.

3Pericyclicreactionsarenecessarilystereospecificandassuch,electrocyclizationsfromachiralmaterialswillproduceasinglediastereoisomer.Reactionssuchasthesethatarenotinfluencedbyachiralcomponentarenotdiscussedinthisreview.

4F.TodaandK.Tanaka,J.Chem.Soc.,Chem.Commun.,1986,1429–1430.

5F.Toda,K.TanakaandM.Yagi,Tetrahedron,1987,43,1495–1502.

6M.Kaftory,M.Yagi,K.TanakaandF.Toda,J.Org.Chem.,1988,53,4391–4393.

7F.TodaandK.Tanaka,TetrahedronLett.,1988,29,4299–4302.8L.-C.Wu,C.J.Cheer,G.Olovsson,J.R.Scheffer,J.Trotter,S.-L.WangandF.-L.Liao,TetrahedronLett.,1997,38,3135–3138.9A.Joy,J.R.Scheffer,D.R.CorbinandV.Ramamurthy,Chem.Commun.,1998,1379–1380.

10A.Joy,L.S.KaanumalleandV.Ramamurthy,Org.Biomol.Chem.,2005,3,3045–3053.

11S.Koodanjeri,A.JoyandV.Ramamurthy,Tetrahedron,2000,56,7003–7009.

12A.K.Sundaresan,C.L.D.Gibb,B.C.GibbandV.Ramamurthy,Tetrahedron,2009,65,7277–7288.

13A.K.Sundaresan,L.S.Kaanumalle,C.L.D.Gibb,B.C.GibbandV.Ramamurthy,DaltonTrans.,2009,4003–4011.

14M.Sato,N.Katagiri,M.Muto,T.HanedaandC.Kaneko,TetrahedronLett.,1986,27,6091–6094.

15T.Bach,H.BergmannandK.Harms,Org.Lett.,2001,3,601–603.

16T.Bach,B.Grosch,T.StrassnerandE.Herdtweck,J.Org.Chem.,2003,68,1107–1116.

17K.Tanaka,O.KakinokiandF.Toda,J.Chem.Soc.,Chem.Commun.,1992,1053–1054.

18D.Seebach,A.K.BeckandA.Heckel,Angew.Chem.,Int.Ed.,2001,40,92–138.

19M.R.Caira,L.R.Nassimbeni,F.TodaandD.Vujovic,J.Am.Chem.Soc.,2000,122,9367–9372.

20S.Ohba,H.Hosomi,K.Tanaka,H.MiyamotoandF.Toda,Bull.Chem.Soc.Jpn.,2000,73,2075–2085.21F.Toda,Acc.Chem.Res.,1995,28,480–486.

22F.Toda,H.Miyamoto,K.Kanemoto,K.Tanaka,Y.TakahashiandY.Takenaka,J.Org.Chem.,1999,,2096–2102.

23T.Naito,Y.TadaandI.Ninomiya,Heterocycles,1984,22,237–240.

24P.Formentın,M.J.Sabater,M.N.Chretıen,H.GarciaandJ.C.Scaiano,J.Chem.Soc.,PerkinTrans.2,2002,1–167.25I.N.NazarovandI.I.Zaretskaya,Izv.Akad.Nauk.USSR,Ser.Khim.Nauk,1941,211.

26S.E.Denmark,ComprehensiveOrganicSynthesis,ed.B.M.TrostandI.Fleming,1991,vol.5,pp.751–784.

27K.L.Habermas,S.E.DenmarkandT.K.Jones,TheNazarovCyclization,JohnWiley&Sons,Inc.,2004.

28A.J.FrontierandC.Collison,Tetrahedron,2005,61,7577–7606.29H.Pellissier,Tetrahedron,2005,61,79–6517.

30W.NakanishiandF.G.West,Curr.Opin.DrugDiscoveryDev.,2009,12,732–751.

31T.Vaidya,A.C.Atesin,I.R.Herrick,A.J.FrontierandR.Eisenberg,Angew.Chem.,Int.Ed.,2010,49,3363–3366.

32M.Kawatsura,K.Kajita,S.HayaseandT.Itoh,Synlett,2010,1243–1246.

33P.Cao,C.Deng,Y.-Y.Zhou,X.-L.Sun,J.-C.Zheng,Z.W.XieandY.Tang,Angew.Chem.,Int.Ed.,2010,49,4463–4466.

34R.B.Woodward,Aromaticity,SpecialpublicationNo.21,TheChemicalSociety,1967,pp.217–249.

35R.B.WoodwardandR.Hoffmann,TheConservationofOrbitalSymmetry,VerlagChemie,Weinheim,WestGermany,1970.36S.E.DenmarkandT.K.Jones,J.Am.Chem.Soc.,1982,104,22–25.

37S.E.DenmarkandR.C.Klix,Tetrahedron,1988,44,4043–4060.38S.E.Denmark,M.A.WallaceandC.B.Walker,J.Org.Chem.,1990,55,5543–5545.

39L.N.Pridgen,K.Huang,S.Shilcrat,A.Tickner-Eldridge,

C.DeBrosseandR.C.Haltiwanger,Synlett,1999,1612–1614.40D.J.Kerr,C.MetjeandB.L.Flynn,Chem.Commun.,2003,

1380–1381.

41D.J.Kerr,J.M.WhiteandB.L.Flynn,J.Org.Chem.,2010,75,

7073–7084.

42H.P.Hu,D.Smith,R.E.CramerandM.A.Tius,J.Am.Chem.

Soc.,1999,121,95–96.

43A.R.BanaagandM.A.Tius,J.Org.Chem.,2008,73,

8133–8141.

44P.E.HarringtonandM.A.Tius,Org.Lett.,2000,2,2447–2450.45D.B.delosSantos,A.R.BanaagandM.A.Tius,Org.Lett.,

2006,8,2579–2582.

46A.R.BanaagandM.A.Tius,J.Am.Chem.Soc.,2007,129,

5328–5329.

47P.E.HarringtonandM.A.Tius,J.Am.Chem.Soc.,2001,123,

8509–8514.

48P.E.Harrington,T.Murai,C.ChuandM.A.Tius,J.Am.Chem.

Soc.,2002,124,10091–10100.

49F.Dhoro,T.E.Kristensen,V.Stockmann,G.P.A.Yapand

M.A.Tius,J.Am.Chem.Soc.,2007,129,7256–7257.

50C.Schultz-Fademrecht,B.Wibbeling,R.Frohlichand

D.Hoppe,Org.Lett.,2001,3,1221–1224.

51C.Schultz-Fademrecht,M.A.Tius,S.Grimme,B.Wibbeling

andD.Hoppe,Angew.Chem.,Int.Ed.,2002,41,1532–1535.52M.Zimmermann,B.WibbelingandD.Hoppe,Synthesis,2004,

765–774.

53G.Liang,S.N.GradlandD.Trauner,Org.Lett.,2003,5,

4931–4934.

54G.LiangandD.Trauner,J.Am.Chem.Soc.,2004,126,

9544–9545.

55V.K.AggarwalandA.J.Belfield,Org.Lett.,2003,5,5075–5078.56J.Nie,H.-W.Zhu,H.-F.Cui,M.-Q.HuaandJ.-A.Ma,Org.

Lett.,2007,9,3053–3056.

57K.YajiandM.Shindo,Synlett,2009,2524–2528.

58I.WalzandA.Togni,Chem.Commun.,2008,4315–4317.

59M.Rueping,W.Ieawsuwan,A.P.Antonchickand

B.J.Nachtsheim,Angew.Chem.,Int.Ed.,2007,46,2097–2100.60W.F.Bow,A.K.Basak,A.Jolit,D.A.VicicandM.A.Tius,

Org.Lett.,2010,12,440–443.

61A.K.Basak,N.Shimada,W.F.Bow,D.A.Vicicand

M.A.Tius,J.Am.Chem.Soc.,2010,132,8266–8267.

62N.Shimada,B.O.Ashburn,A.K.Basak,W.F.Bow,D.A.Vicic

andM.A.Tius,Chem.Commun.,2010,46,3774–3775.

rez-FaginasandR.Gonzalez-Mun63M.T.Aranda,P.Peiz,Curr.

Org.Synth.,2009,6,325–341.

N.FuandT.T.Tidwell,Tetrahedron,2008,,10465–10496.

andL.Ku65E.J.Corey,B.Czakorti,MoleculesandMedicine,

Wiley,Hoboken,NJ,2007.

66B.Alcaide,P.AlmendrosandC.Aragoncillo,Chem.Rev.,2007,

107,4437–4492.

67C.PalomoandJ.M.Aizpurua,ScienceofSynthesis(Houben-Weyl),

ed.D.BellusandR.Danheiser,Thieme,Stuttgart,2006,vol.23.6.68C.Palomo,J.M.Aizpurua,I.GanboaandM.Oiarbide,Curr.

Med.Chem.,2004,11,1837–1872.

69G.S.Singh,Tetrahedron,2003,59,7631–79.

70B.Alcaide,P.AlmendrosandC.Aragoncillo,Curr.Opin,Drug.

DiscoveryDev.,2010,13,685–697.

71A.K.Bose,M.S.Manhas,B.K.BanikandV.Srirajan,inThe

AmideLinkage,ed.A.Greenberg,C.M.BrenemanandJ.F.Liebman,WileyInterscience,NewYork,2000,pp.157–214.72I.Ojima,Acc.Chem.Res.,1995,28,383–3.

73G.I.GeorgandV.T.Ravikumar,inTheOrganicChemistryof

b-Lactams,ed.G.I.Georg,VCH,NewYork,1993,pp.295–368.74G.I.Georg,Bioorg.Med.Chem.Lett.,1993,3,2157–2157.

75F.H.vanderSteenandG.vanKoten,Tetrahedron,1991,47,

7503–7524.

76J.Xu,Arkivoc,2009,21–44.

77H.Staudinger,JustusLiebigsAnn.Chem.,1907,356,51–123.78L.Jiao,Y.LiangandJ.Xu,J.Am.Chem.Soc.,2006,128,

6060–6069.

zarandF.P.Cossıo,79B.K.Banik,B.Lecea,A.Arrieta,A.deCo

Angew.Chem.,Int.Ed.,2007,46,3028–3032.

80Y.Liang,L.Jiao,S.W.Zhang,Z.-X.YuandJ.Xu,J.Am.Chem.

Soc.,2009,131,1542–1549.

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GThisjournaliscTheRoyalSocietyofChemistry2011Chem.Soc.Rev.,2011,40,4217–42314229View Article Online

81F.P.Cossıo,J.M.Ugalde,X.Lopez,B.LeceaandC.Palomo,J.Am.Chem.Soc.,1993,115,995–1004.

82Y.Wang,Y.Liang,L.Jiao,D.-M.DuandJ.Xu,J.Org.Chem.,2006,71,6983–6990.

83B.N.Li,Y.Wang,D.-M.DuandJ.Xu,J.Org.Chem.,2007,72,990–997.

84R.Lopez,T.L.Sordo,J.A.SordoandJ.Gonzalez,J.Org.Chem.,1993,58,7036–7037.

85C.Palomo,F.P.Cossıo,C.Cuevas,B.Lecea,A.Mielgo,

n,A.LuqueandM.Martinezripoll,J.Am.Chem.P.Roma

Soc.,1992,114,9360–9369.

86R.D.G.Cooper,B.W.DaughertyandD.B.Boyd,PureAppl.Chem.,1987,59,485–492.

87F.P.Cossıo,A.ArrietaandM.A.Sierra,Acc.Chem.Res.,2008,41,925–936.

88D.A.EvansandE.B.Sjogren,TetrahedronLett.,1985,26,3783–3786.

D.A.EvansandE.B.Sjogren,TetrahedronLett.,1985,26,3787–3790.

90I.Ojima,N.Shimizu,X.G.Qiu,H.J.C.ChenandK.Nakahashi,Bull.Soc.Chim.Fr.,1987,9–658.

91I.OjimaandX.Qiu,J.Am.Chem.Soc.,1987,109,6537–6538.92I.Ojima,H.-J.C.ChenandX.Qiu,Tetrahedron,1988,44,5307–5318.

93R.Saul,J.KopfandP.Koll,Tetrahedron:Asymmetry,2000,11,423–433.

94D.G.Shin,H.J.HeoandJ.-G.Jun,Synth.Commun.,2005,35,845–855.

95M.Muller,D.Bur,T.TschamberandJ.Streith,Helv.Chim.Acta,1991,74,767–773.

.Maestro,pez-Ortiz,M.A96C.delPozo,A.Macıas,F.Lo

E.AlonsoandJ.Gonzalez,Eur.J.Org.Chem.,2004,535–545.97G.AbbiatiandE.Rossi,Tetrahedron,2001,57,7205–7212.

98E.Bandini,G.Martelli,G.SpuntaandM.Panunzio,Synlett,1996,1017–1018.

99A.Bongini,M.Panunzio,E.Tamanini,G.Martelli,P.VicennatiandM.Monari,Tetrahedron:Asymmetry,2003,14,993–998.100B.K.Banik,I.BanikandF.F.Becker,Eur.J.Med.Chem.,2010,

45,846–848.

101A.L.Shaikh,A.S.Kale,M.A.Shaikh,V.G.Puranikand

A.R.A.S.Deshmukh,Tetrahedron,2007,63,3380–3388.

102P.M.Chincholkar,V.G.PuranikandA.R.A.S.Deshmukh,

Synlett,2007,2242–2246.

103P.M.Chincholkar,A.S.Kale,V.K.GumasteandA.R.A.S.

Deshmukh,Tetrahedron,2009,65,2605–2609.

104B.A.Shinkre,V.G.Puranik,B.M.BhawalandA.R.A.S.

Deshmukh,Tetrahedron:Asymmetry,2003,14,453–459.

105L.BirkhoferandJ.Schramm,JustusLiebigsAnn.Chem.,1977,

760–766.

106A.Arrieta,F.P.CossıoandB.Lecea,J.Org.Chem.,2000,65,

8458–84.

107A.K.Bose,M.S.Manhas,J.M.Vanderveen,S.S.Bariand

D.R.Wagle,Tetrahedron,1992,48,4831–4844.

108T.E.GundaandF.Sztaricskai,Tetrahedron,1997,53,

7985–7998.

109C.-M.Qi,Y.-F.WangandL.C.Yang,J.Heterocycl.Chem.,

2005,42,679–684.

110A.R.Todorov,V.B.Kurteva,R.P.Bontchevand

N.G.Vassilev,Tetrahedron,2009,65,10339–10347.

111P.DelButteroandG.Molteni,Tetrahedron:Asymmetry,2006,

17,1319–1321.

z,E.Martın-Zamora,E.Dıez,R.Fernandez112E.Marques-Lope

andJ.M.Lassaletta,Eur.J.Org.Chem.,2008,2960–2972.

ndez,A.Ferrete,J.M.Llera,A.Magriz,E.Martın-113R.Ferna

Zamora,E.DıezandJ.M.Lassaletta,Chem.–Eur.J.,2004,10,737–745.

114F.P.Cossıo,A.Arrieta,B.LeceaandJ.M.Ugalde,J.Am.Chem.

Soc.,1994,116,2085–2093.

115C.HubschwerlenandG.Schmid,Helv.Chim.Acta,1983,66,

2206–2209.

116D.R.Wagle,C.Garai,J.Chiang,M.G.Monteleone,

B.E.Kurys,T.W.Strohmeyer,V.R.Hegde,M.S.ManhasandA.K.Bose,J.Org.Chem.,1988,53,4227–4236.

117A.D.BrownandE.W.Colvin,TetrahedronLett.,1991,32,

5187–5190.

118S.Saito,T.IshikawaandT.Moriwake,Synlett,1993,139–140.119D.R.Wagle,C.Garai,M.G.MonteleoneandA.K.Bose,

TetrahedronLett.,1988,29,19–1652.

120D.A.EvansandJ.M.Williams,TetrahedronLett.,1988,29,

5065–5068.

121C.Baldoli,P.DelButtero,E.Licandro,S.Maioranaand

A.Papagni,Tetrahedron:Asymmetry,1994,5,809–812.

122S.France,A.Weatherwax,A.E.TaggiandT.Lectka,Acc.

Chem.Res.,2004,37,592–600.

123E.C.Lee,B.L.Hodous,E.Bergin,C.ShihandG.C.Fu,J.Am.

Chem.Soc.,2005,127,11586–11587.

124Y.-R.Zhang,L.He,X.Wu,P.-L.ShaoandS.Ye,Org.Lett.,

2008,10,277–280.

125N.Duguet,C.D.Campbell,A.M.Z.SlawinandA.D.Smith,

Org.Biomol.Chem.,2008,6,1108–1113.

126S.J.VeenstraandW.N.Speckamp,J.Chem.Soc.,Chem.

Commun.,1982,369–370.

127R.J.Vijn,W.N.Speckamp,B.S.DejongandH.Hiemstra,

Angew.Chem.,Int.Ed.Engl.,1984,23,165–166.

128E.E.Maciver,S.ThompsonandM.D.Smith,Angew.Chem.,

Int.Ed.,2009,48,9979–9982.129S.MullerandB.List,Angew.Chem.,Int.Ed.,2009,48,

9975–9978.130S.MullerandB.List,Synthesis,2010,2171–2178.

131L.SimonandJ.M.Goodman,J.Am.Chem.Soc.,2009,131,

4070–4077.

132W.H.Okamura,R.PeterandW.Reischl,J.Am.Chem.Soc.,

1985,107,1034–1041.

133N.A.Magomedov,P.L.RuggieroandY.C.Tang,Org.Lett.,

2004,6,3373–3375.

134C.L.BensonandF.G.West,Org.Lett.,2007,9,2545–2548.135M.Bamba,T.NishikawaandM.Isobe,Tetrahedron,1998,54,

6639–6650.

136N.Ohyabu,T.NishikawaandM.Isobe,J.Am.Chem.Soc.,2003,

125,8798–8805.

137R.Hayashi,J.B.FeltenbergerandR.P.Hsung,Org.Lett.,2010,

12,1152–1155.

138R.Hayashi,M.C.Walton,R.P.Hsung,J.H.SchwabandX.Yu,

Org.Lett.,2010,12,5768–5771.

139B.M.TrostandY.Shi,J.Am.Chem.Soc.,1992,114,791–792.140L.M.Bishop,J.E.Barbarow,R.G.BergmanandD.Trauner,

Angew.Chem.,Int.Ed.,2008,47,8100–8103.

141L.M.Bishop,R.E.Roberson,R.G.BergmanandD.Trauner,

Synthesis,2010,2233–2244.

142R.P.Hsung,W.D.WulffandC.A.Challener,Synthesis,1996,

773–7.

143R.P.Hsung,W.D.WulffandA.L.Rheingold,J.Am.Chem.

Soc.,1994,116,49–50.

144S.K.Ghosh,G.S.Buchanan,Q.A.Long,Y.Wei,Z.F.

Al-Rashid,H.M.SklenickaandR.P.Hsung,Tetrahedron,2008,,883–3.

145J.S.Wang,J.J.Swidorski,N.Sydorenko,R.P.Hsung,H.A.

Coverdale,J.M.KuyavaandJ.Liu,Heterocycles,2006,70,423–459.146R.P.Hsung,A.V.KurdyumovandN.Sydorenko,Eur.J.Org.

Chem.,2005,23–44.

147N.Sydorenko,R.P.Hsung,O.S.Darwish,J.M.Hahnand

J.Liu,J.Org.Chem.,2004,69,6732–6738.

148S.J.Luo,C.A.ZificsakandR.P.Hsung,Org.Lett.,2003,5,

4709–4712.

149M.J.McLaughlin,R.P.Hsung,K.P.Cole,J.M.Hahnand

J.S.Wang,Org.Lett.,2002,4,2017–2020.

150H.M.Sklenicka,R.P.Hsung,M.J.McLaughlin,L.-L.Wei,

A.I.GerasyutoandW.B.Brennessel,J.Am.Chem.Soc.,2002,124,10435–10442.

151L.-L.Wei,R.P.Hsung,H.M.SklenickaandA.I.Gerasyuto,

Angew.Chem.,Int.Ed.,2001,40,1516–1518.

152H.M.Sklenicka,R.P.Hsung,L.L.Wei,M.J.McLaughlin,

A.I.GerasyutoandS.J.Degen,Org.Lett.,2000,2,1161–11.153N.Sydorenko,R.P.HsungandE.L.Vera,Org.Lett.,2006,8,

2611–2614.

154E.M.Cabaleiro-Lago,J.Rodriguez-Otero,S.M.Varela-Varela,

A.Pena-GallegoandJ.M.Hermida-Ramon,J.Org.Chem.,2005,70,3921–3928.

155T.Kobayashi,F.Hasegawa,K.TanakaandS.Katsumura,Org.

Lett.,2006,8,3813–3816.

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022G4230Chem.Soc.Rev.,2011,40,4217–4231ThisjournaliscTheRoyalSocietyofChemistry2011View Article Online

156T.Kobayashi,M.Nakashima,T.Hakogi,K.Tanakaand

S.Katsumura,Org.Lett.,2006,8,3809–3812.

157K.TanakaandS.Katsumura,J.Am.Chem.Soc.,2002,124,

9660–9661.

158K.Tanaka,T.Kobayashi,H.MoriandS.Katsumura,J.Org.

Chem.,2004,69,5906–5925.

159T.Kobayashi,K.Tanaka,J.MiwaandS.Katsumura,Tetra-hedron:Asymmetry,2004,15,185–188.

160T.Kobayashi,K.Takeuchi,J.Miwa,H.Tsuchikawaand

S.Katsumura,Chem.Commun.,2009,3363–3365.

161Y.Li,T.KobayashiandS.Katsumura,TetrahedronLett.,2009,

50,4482–4484.

162S.PatirandN.Uludag,Tetrahedron,2009,65,115–118.163N.Uludag,T.HokelekandS.Patir,J.Heterocycl.Chem.,2006,

43,585–591.

1T.Sakaguchi,S.KobayashiandS.Katsumura,Org.Biomol.

Chem.,2011,9,257–2.

165H.C.Shen,J.Wang,K.P.Cole,M.J.McLaughlin,C.D.

Morgan,C.J.Douglas,R.P.Hsung,H.A.Coverdale,A.I.Gerasyuto,J.M.Hahn,J.Liu,H.M.Sklenicka,L.-L.Wei,L.R.ZehnderandC.A.Zificsak,J.Org.Chem.,2003,68,1729–1735.166R.P.Hsung,H.C.Shen,C.J.Douglas,C.D.Morgan,

S.J.DegenandL.J.Yao,J.Org.Chem.,1999,,690–691.167M.J.McLaughlin,H.C.ShenandR.P.Hsung,Tetrahedron

Lett.,2001,42,609–613.

168M.Jonassohn,O.SternerandH.Anke,Tetrahedron,1996,52,

1473–1478.

169D.H.Hua,Y.Chen,H.-S.Sin,M.J.Maroto,P.D.Robinson,

S.W.Newell,E.M.Perchellet,J.B.Ladesich,J.A.Freeman,J.P.PerchelletandP.K.Chiang,J.Org.Chem.,1997,62,6888–66.170U.K.Tambar,T.KanoandB.M.Stoltz,Org.Lett.,2005,7,

2413–2416.

171U.K.Tambar,T.Kano,J.F.ZepernickandB.M.Stoltz,

TetrahedronLett.,2007,48,345–350.

172R.Sagar,P.Singh,R.Kumar,P.R.MaulikandA.K.Shaw,

Carbohydr.Res.,2005,340,1287–1300.

173K.C.Nicolaou,N.A.Petasis,R.E.ZipkinandJ.Uenishi,J.Am.

Chem.Soc.,1982,104,5555–5557.

174K.C.Nicolaou,N.A.Petasis,J.UenishiandR.E.Zipkin,J.Am.

Chem.Soc.,1982,104,5557–5558.

175K.C.Nicolaou,R.E.ZipkinandN.A.Petasis,J.Am.Chem.

Soc.,1982,104,5558–5560.

176K.C.Nicolaou,N.A.PetasisandR.E.Zipkin,J.Am.Chem.

Soc.,1982,104,5560–5562.

177W.M.Bandaranayake,J.E.Banfield,D.St.C.Black,

G.D.FallonandB.M.Gatehouse,J.Chem.Soc.,Chem.Commun.,1980,162–163.

178W.M.Bandaranayake,J.E.BanfieldandD.St.C.Black,

J.Chem.Soc.,Chem.Commun.,1980,902–903.

179W.M.Bandaranayake,J.E.Banfield,D.St.Black,G.D.Fallon

andB.M.Gatehouse,Aust.J.Chem.,1981,34,1655–1667.180C.M.BeaudryandD.Trauner,Org.Lett.,2005,7,4475–4477.181M.F.Jacobsen,J.E.Moses,R.M.AdlingtonandJ.E.Baldwin,

Org.Lett.,2005,7,2473–2476.

182K.A.ParkerandY.-H.Lim,J.Am.Chem.Soc.,2004,126,

15968–15969.

183J.E.Moses,J.E.Baldwin,R.Marquez,R.M.Adlingtonand

A.R.Cowley,Org.Lett.,2002,4,3731–3734.

184C.M.BeaudryandD.Trauner,Org.Lett.,2002,4,2221–2224.185V.Sofiyev,G.NavarroandD.Trauner,Org.Lett.,2008,10,

149–152.

186A.K.MillerandD.Trauner,Synlett,2006,2295–2316.187K.A.ParkerandY.-H.Lim,Org.Lett.,2004,6,161–1.188K.A.ParkerandZ.Y.Wang,Org.Lett.,2006,8,3553–3556.1C.Hulot,G.BlondandJ.Suffert,J.Am.Chem.Soc.,2008,130,

5046–5047.

190C.Hulot,S.Amiri,G.Blond,P.R.SchreinerandJ.Suffert,

J.Am.Chem.Soc.,2009,131,13387–13398.

191J.T.Negri,T.Morwick,J.Doyon,P.D.Wilson,E.R.Hickey

andL.A.Paquette,J.Am.Chem.Soc.,1993,115,121–12190.192L.A.Paquette,L.H.Kuo,A.T.Hamme,R.Kreuzholzand

J.Doyon,J.Org.Chem.,1997,62,1730–1736.

193L.A.PaquetteandJ.S.Tae,J.Org.Chem.,1998,63,2022–2030.194L.A.PaquetteandF.Geng,J.Am.Chem.Soc.,2002,124,

9199–9203.

195F.Geng,J.LiuandL.A.Paquette,Org.Lett.,2002,4,71–73.

Downloaded by Southwest University on 22/04/2013 09:02:29. Published on 12 May 2011 on http://pubs.rsc.org | doi:10.1039/C1CS15022GThisjournaliscTheRoyalSocietyofChemistry2011Chem.Soc.Rev.,2011,40,4217–42314231

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baomayou.com 版权所有 赣ICP备2024042794号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务