亿库教育网 http://www.eku.cc
D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是 【 】
江苏省常州市翠竹中学2012届九年级数学新课结束调研考试试题(无答案)
注意事项:1. 本试卷满分为120分,考试时间为120分钟.
2. 学生在答题过程中不能使用任何型号的计算器和其它计算工具;若试题计算没有要求取近似值,则计算结果取精确值(保留根号与).
一、选择题(本大题共9小题,每小题2分,共18分.下列各题的四个选项中,只有一项符合题意) ..1.若二次根式
x1有意义,则x的取值范围为 【 】
A.3 C.
10
3
B. D.4
113
二、填空题(本大题共10小题,每小题2分,共20分) 10.方程x22x0的解为 .
11.已知关于x的方程x22x2k0的一个根是1,则k= . 12.一组数据35,35,36,36,37,38,38,38,39,40的极差是______ __.
13.小明的圆锥形玩具的高为12cm,母线长为13cm,则该圆锥的侧面积是 cm2. 14.如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚
动,该小钢球最终停在阴影区域的概率为 . 15.如图,AB是⊙O直径,AOC130,则D____ _°.
A. x1 B. x0 C. x1 D. x1
2.二次函数yx25图像的顶点坐标是 【 】
A.(-1,5) B.(1,5) C.(0, 5) D.(0,-5)
C B B
D O D A
A
E B (第17题图)
C
3.下列计算正确的是 【 】
A. a2a2a4 B. a5a2a7
C. (a2)3a5
D. 2a2a22
4.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是 【 】
A D C
(第14题图) (第15题图)
416.在△ABC中,∠C=90°,sinA=,则tanB= .
5A. 12 B. 9 C. 4 D. 3
17.如图,菱形ABCD的边长是2㎝,E是AB中点,且DE⊥AB,则菱形ABCD的面积为____ _____㎝2. 18.初三数学课本上,用“描点法”画二次函数yaxbxc的图象时,列了如下表格:
25.⊙O的直径为10,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是 【 】
A. 相交 B. 相切 C. 相离 D. 无法确定
x „ -2 12-1 0 121 2 12„ „ y „ 6 -4 2 -2 226. 如图,在□ABCD中,已知AD=8㎝, AB=6㎝, DE平分∠ADCA D 交BC边于点E,则BE等于 【 】
根据表格中的信息回答:关于x的一元二次方程axbxc4的解为 . 19.如图给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿
正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这
1 2
B E C
A. 2cm C. 6cm
B. 4cm
D. 8cm
7.已知⊙O1和⊙O2的半径分别为3cm和4cm,圆心距O1O2=6cm,那么⊙O1和⊙O2的位置关系是【 】 种走法为一次“移位”.如:小宇在编号为3的顶点时,那么他应走3个边5 A. 相交
2B. 内切 C. 外切 D. 外离
长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第2011次“移位”后,则他所处顶点的编号是______ ___. 三、解答题(本大题共4小题,每题5分,共20分)
4 3 8.将抛物线y2x向下平移2个单位,得到抛物线解析式是 【 】
A. y2x2 B. y2(x2)2 C. y2x22
D. y2x22
9.如下图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若
亿库教育网 http://www.eku.cc
亿库教育网 http://www.eku.cc
20.(1)计算:
14212cos6020; (2)化简:
4x421x2另一人就记为踢一次.
;
(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明) (2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.
1x1(3)解方程:x5x40; (4)解不等式组:2.
2x13x2
23.(本小题满分7分)如图,A、F、C、D四点在一直线上,AFCD,AB∥DE,且ABDE.
四、解答题(本大题共8小题,共62分)
21.(本小题满分6分) 某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们
从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
30252015105求证:(1)ABC≌DEF;(2)CBFFEC.
24.(本小题满分6分)已知:如图,AB是⊙O的弦,∠OAB=45°,C是优弧AB上一点,BD∥OA,交
AFCEDB人数 2312CA延长线于点D,连结BC.
B 46%
A 20%
BCD等级
C 24% D
(1)求证:BD是⊙O的切线;
10(2)若AC=43,∠CAB=75°,求⊙O的半径. B O D A C A(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下) (1)请把条形统计图补充完整;
(2)扇形统计图中D级所占的百分比是 ;
(3)扇形统计图中A级所在的扇形的圆心角度数是 ;
(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为 人. 22.(本小题满分7分)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到
25.(本小题满分7分)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E亿库教育网 http://www.eku.cc
亿库教育网 http://www.eku.cc
处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km. (1)判断AB、AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:3≈1.73,sin74°≈
0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)
26.(本小题满分7分)在如图的矩形包书纸皮示意图中,虚线为折痕,阴影是裁剪掉的部分,四角均
为大小相同的正方形,正方形的边长即为折叠进去的宽度.若有一数学课本长为26cm、宽为18.5cm、厚为1cm,小明用一张面积为1260cm的矩形纸包好了这本数学书,封皮展开后如图所示.求折叠进去的宽度.
27.(本小题满分10分) 如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴
2
A型墙纸,△ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为
每平方60元、80元、40元.
探究1:如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需 元; 探究2:如果木板边长为1米,求一块木板需用墙纸的最省费用;
探究3:设木板的边长为a(a为整数),当正方形EFCG的边长为多少时?墙纸费用最省;如要
A 用这样的多块木板贴一堵墙(7×3平方米)进行装饰,要求每块木板A型的墙纸不超过1平方米,且尽量不浪费材料,则需要这样的木板 块.
B
Q
28.(本小题满分12分)如图,RtABC在平面直角坐标系中,BC在x轴上,B(﹣1,0)、A(0,2),
P E F
AC⊥AB.
(1)求线段OC的长.
(2)点P从B点出发以每秒4个单位的速度沿x轴正半轴运动,点Q从A点出发沿线段..AC以5个
单位每秒速度向点C运动,当一点停止运动,另一点也随之停止,设△CPQ的面积为S,两点同时运动,运动的时间为t秒,求S与t之间关系式,并写出自变量取值范围.
(3)Q点沿射线AC按原速度运动,⊙G过A、B、Q三点,是否有这样的t值使点P在⊙G上、如果有
求t值,如果没有说明理由.
AyxBOC亿库教育网 http://www.eku.cc
亿库教育网 http://www.eku.cc
九 年 级 教 学 情 况 调 研 测 试 2012. 4
数 学 试 题 答 案
一、选择题(每小题2分,共18分) 题号 答案 题号 答案 题号 答案 10 0,2 1 D 7 D 11 12 (2)10%„„„(2分) (3)72°„„„(4分) (4)561„„„(6分)
2 C 8 D 12 5 13 65 3 B 9 B 14 144 A 15 25 16 345 C 17 23 6 A 18 -1,3 19 3
22.(本小题满分7分) 解:(1)踺子踢到小华处的概率是
14.„„„„„„„„„„„„„„„„„„„„„2分
二、填空题(每小题2分,共20分)
三、解答题(每题5分,共20分)
1421树状图如下:
小丽
小王 小华 „„„„„„„„„„„„„„„„4分
小丽 小王
小华
小丽
(2)小王.„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„5分 理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是
是
381420.(1)计算:
2cos6020; (2)化简:
4(x2)(x2)2x(x2)(x2)1x24x421x2;
,踢到其它两人处的概率都
,因此,踺子踢到小王处的可能性是最小. „„„„„7分
=2+2-2×
12+1„„„„„„(4分) =
x2(x2)(x2)„„„(2分)
23. 证明:(1)∵AF=CD,
∴AF+FC=CD+FC即AC=DF.„„„„„1分
=4„„„„„„(5分) =„„„(3分)
ED∵AB∥DE,
∴∠A=∠D.„„„„„2分
CF =„„„(5分)
∵AB=DE,
∴在△ABC和△DEF中,AB=DE,∠A=∠D,AC=DF. ∴△ABC≌△DEF(SAS).„„„„3分 (2)∵△ABC≌△DEF(已证),
∴BC=EF,∠ACB=∠DFE.„„„„4
A1x12(3)解方程:x5x40; (4)解不等式组:2.
2x13xBa=1,b=5,c=-4„„„(1分) x2„„„(2分)
2b4ac251641„„„(3分) x2„„„(4分)
在△BCF和△EFC中,BC=EF,∠ACB=∠DFE,FC=FC, ∴△BCF≌△EFC(SAS).„„„„6 ∴∠CBF=∠FEC.„„„„7
xb2a5241„„„(5分) ∴-2<x≤2„„(5分)
24.证明:连接OB,∵OA=OB,∠OAB=45°, ∴∠1=∠OAB=45°„„„„„1分 ∵AO∥DB,
∴∠2=∠OAB=45°„„„„„2分. ∴∠1+∠2=90°.∴BD⊥OB于B.
亿库教育网 http://www.eku.cc
四、解答题(本大题共8小题,共62分) 21. (1)图略„„(1分)
亿库教育网 http://www.eku.cc
∴又点B在⊙O上.∴BD是⊙O的切线.„„„„„3分 (2)解:作OE⊥AC于点E.
∵OE⊥AC,AC=43,∴AE=23„„„„„4分.
(2)设CF=x,费用为y
y=20x2—20x+60 „„„„„„4分 当x=
12时,y小=55元。„„„„„„5分
∵∠BAC=75°,∠OAB=45°, ∴∠3=∠BAC-∠OAB=30°.
∴在Rt△OAE中,OA=4„„„„„6分
25.(1)相等,证明:∵∠BEQ=30°,∠BFQ=60°,∴∠EBF=30°,∴EF=BF.„„„„„1分 又∵∠AFP=60°,∴∠BFA=60°.
在△AEF与△ABF中,EF=BF,∠AFE=∠AFB,AF=AF,∴△AEF≌△ABF,„„„„2分 ∴AB=AE.
(2)作AH⊥PQ,垂足为H,设AE=x,
则AH=xsin74°,HE=xcos74°,HF=xcos74°+1.„„„3分 Rt△AHF中,AH=HF·tan60°,∴xcos74°=(xcos74°+1)·tan60°„„„„„5分 即0.96x=(0.28x+1)×1.73, ∴x≈3.6,即AB≈3.6 km.
答:两个岛屿A与B之间的距离约为3.6km„„„„„7分 法二:设AF与BE的交点为G,在Rt△EGF中,因为EF=1,所以 EG=32(3)y=20x2—20ax+60a2 „„„„„„„7分
当x=
12a时,费用最省„„„„„„„„„„„8分
21块 „„„„„„„„„„10分
A 28. (1)利用相似即可求得OC=4„„„„„„„1分. (2)当P在BC上,Q在线段AC上时,(0tB P H E
F
Q
如图所示过点Q作QDBC,则,且CQ25即s2t254)„„„„„2分
yQ5t,CP54t,
A132t5„„„„„4分(0t5454)
xODPC当P在BC延长线上,Q在线段AC上时(t2),„„„„5分 B5t,CP4t5,
„„„„„4分
如图所示过点Q作QDBC,则,且CQ25即s2t2132t5„„„7分
在Rt△AEG中AEG76,AEEGcos76320.243.6 „„„„„6分
当t54或t2时C、P、Q都在同一直线上。
答: 两个岛屿A与B之间的距离约为3.6km „„„„„7分 26.解:设折叠进去的宽度为xcm
由题意,得: 2x382x261260 „„„„ 3分
解得:x12,x234(不符合题意,舍去);
∴ x=2 „„„„„„„ 6分
答:小正方形的边长为2cm. „„„„„„„ 7分
27.(1)220 „„„„„ 2分
(3)若点P在圆G上,因为AC⊥AB,所以BQ是直径,所以BPQRt,即PQBC,„9分 则BPPQBQBAAQ,得4t2t解得t1122222222525t2 yAQ,t21216(不合题意,舍去)
O所以当t=时,点P在圆G上. „„„„„12分
xBDCP(也可以在(2)的基础上分类讨论,利用相似求得)
亿库教育网 http://www.eku.cc