您好,欢迎来到宝玛科技网。
搜索
您的当前位置:首页奇异Sturm-Liouville边值问题的正解(英文)

奇异Sturm-Liouville边值问题的正解(英文)

来源:宝玛科技网
第35卷第6期 吉首大学学报(自然科学版) Journal of Jishou University(Natural Science Editio“) Vo1.35 No.6 Nov.2014 2014年11月 Artic1e ID:1007—2985(2014)06—0010—04 ingularity POsitive Soluti0n for Sturm.Liouville Boundary Value Problem with S LI Junjon (Scho0l。f Applied Mathematics,Naniing UniVersity of Financ and Ec0nomics,Nanjing 210046,China) Abstract:By using tOpolog 1 degree an xed point the0rem In cOne'wec0n ¨ k眦 卜 tive s。luti。ns。f Sturm-Li。uville boundary va1ue problem with singularity,and obtain the new ex stence theorems.It will have a wide range of application・ Key w。rds:singu1arity;Sturm—Li。uVille boundany Value problem;p。sitiVe s。luti。n CLC number:O175.14;0177.91 Document code:A DOI:10.3969/j.issn.1007—2985.2014.06.003 In this paper,we c。nsider the p。sitiVe soluti。ns of Sturm—Liou iU b。und y l“ problem: f(p(£)“ (£)) +Ah(£)-厂( ,“(f)):::0 O<f<1. (1) \aH(0)一 (0)M (0)一0, (1)+3p(1)“ (1)一0, where >o, ,),, ≥o and p=r/3+ay 1 +如>0.If there ex s [O’1]suc ha 。,then BVP(1)is called s ngularity at t ̄R e existence 。sitive s。luti。n。f Sturm-Li。uville BVP ecently,many papers are interested in the ex ste ce OI Pu LlV u u Llu¨V 一…‘ .. .. . gularity.Reference[5]。btained the existence。f p。sitiVe s。luti。n。f sturm—Li。uVn BVP i 。 g singularity.In reference嘲,the auth。r。btained the existence。f p0SitiVe solution。f three-p。int b。unda— ry Value problem w h ngularity... ..I n this paper.we consider the pomtlve solution oi D V ns,BvP(1),whefe厂is c。ntinu。us and is al1。wed t。J‘ ‘ …“ 。… …… 1 Preliminary Before the statement of OUr main results,we need some lemmas・ Lemma 117 Supp。se I>0,a,卢,y, ≥O,then the Green’s functi。n f。r the BVP f( ( ) ( )) 一0 0<t<1, I口 (o)一flp(O)u (0)=0,7u(1)+ p(1)“ (1) 0 is given by :Be iceiv ed h daLteI :2J u0n1j4-un(0149-290-8,)f emale 。 was bor n in Nant。n Cg ity,Jiangsu Province,master¥the research area Isfunography: , , n m Nant0n uv1 ………… tional analysis. 第6期 李君君:奇异Sturm—Liouville边值问题的正解 |_1 0≤s≤t≤1, G 0≤t<s≤1. We denote g — / 、, 一P 一P \三 一 +a J- +y.『 寿 + + m as ’ 0≤t≤1. ,●●●●●●●●●,、 ●●●●●●【n  afl。+y 寿 K==={“∈CEo,1]: 一 (一p  )≥lI“l lq(£),O≤£≤1),ll“( ) 一max (£),O≤t≤1  ( )一IJ  0 G(£,5) (5)ds.q( )>0, 一) 一) 0<t<1,and it is easy to check that K is a cone of nonnegative function in c[0,1]. The following conditions will be assumed throughout: (H1)a,+ 卢,y, ≥O,+ p>O; y r1 (H2)h:(o,1)一[o,∞)is continuous and I h(£)dt<∞; 一p 一 J 0 (H。)P∈C([O,1],[O,oo)),,∈c([0,1]X[0,oo),R).一、, 一)  、.......... Lemm 2 Let X—c[o,1],K一{\, .....J  E-X:甜(£)≥0).Suppose T:X X is completely continuous. Define 0:TX— K by (Oy)(£)一max{Y( ), (£)} for Y∈TX, where(u∈C [0,1], (£)≥0 is a given function.Then 0。T:x K is also a completely continuous operator. 2 Theorem and Theorem Proving Theorem 1 Suppose there are r>M>0,such that M 0< 可 一口 ≤b— r A max f(t, )’ 0≤£≤1 O≤f≤t, MoJ(t)≤ ≤r where A=m0≤ax,t≤1, J 0I  G(t,s) (s)ds.If ∈a,6],then BVP(1)has at least one positive solution 1(£)satis- lying O<Mw( )≤“1(£),O<t<l,and lI 1( )lI≤r. Proof Let ㈤ 一 ㈤ ㈤. And define T:K—X by r1 Tu( )一 l G(£,s)^(s) (5, (s))ds 0≤t≤1. d 0 Now we prove that T is a completely continuous operatetor on K. Given a function甜∈X,for each£>0,there exists >0,such that , ,“)一厂 , )El< for any ∈X,lI“一 II< . Since I(T £)一(T 一f :G ㈤ , ))ds— G ㈤厂 , ㈤)ds I≤ 6 G ㈤ds l 1厂 一厂 , ))I≤ b I f (s, (s))一f (s, (5))I 0≤f≤1J 0 maxI G(t,s)h(s)ds<e. Thus T iS a continuous operatetor. 12 吉首大学学报(自然科学版) 第35卷 Next we prove that T injects a bounded subset N c K onto a relatively compact set in X. For any function M(£)EN and I 【l】≤C,here C is a positive constant,so I(T 一 G ㈤, , ))ds I≤6 G(≠ ㈤, , )) Since I l“lI≤C,厂 (s, (s))is c。nsistent c。ntinuous,then f1 (s),*(5,“(s))ds is bounded by p。sitive J 0 constant N and T is consistent bounded. Let B:I h(5)f (s,u(5))ds, l(T“)(£ )一(丁 )(£z)I===l -r (G( ,s)~G(£ , )) (s), (s, (s))ds I≤ bl h(s), (5, ( )) max I G(tl,5)一G(t2,s)I. G( ,5)is continuous on[O,1]×E0,1],then for any e>0,there exist >0,I t1一t 2 l< ,such that 04£≤1 max 1 G(£1, )一G(£2,s) I< ,s。1(T“ )一(丁 z)I<e.Then T is a c。mpletely c。ntinu0uS。p— erator. For the operator 0:X—K defined by (Ou)(t)一max{ (t),0}, lemma 2 implies that 0。T:K K is completely continuous. Take n一{u∈K:1I甜ll<r),given E a ,set.『一{t E[O,1]:f (£, (f))≥0),then ( 。T) (£)一max{ f1G( ,s) (s),*(s,“(s))ds,o)≤ f G(£,s)矗(5)厂*(s,“(s))ds≤ r b maxf (t, )I G(£,s)h( )ds≤Ab max f(t,u)≤r. :嚣; Suppose for V“E a ,( 。7、)甜≠u,it follows that deg (I一0。T,0,O)===1, where deg stands for the degree in cone K.Then 0。T has a fixed point in n.So 0。丁has a fixed point“1 in n. Now we claim that (Tu )(£)≥M(U(£) t E EO,1]. (3) Otherwise,there is t oE E0,1],such that M(cJ(t o)一(Tu】)(£。)一max{Mw(t)一Tu1(t)):L>0. O≤f≤1 Next we prove to E(0,1).If to===0,then Mw (0)一(了、 1) (0)≤O.According to the boundary condi tion,we have a(Mco(O)一(Tu )(0))一 (0)(M(D (O)一(Tu ) (0))一o, which contradicts(H1).If t 0—1,we have Mw (1)一Tu】 (1)≥O.According to the boundary condition, we have y(Moo(1)一Tul(1))+8p(1)(Moo (1)一Tu1 (1))一0, which contradicts(H1).So t o E(0,1)and』‰ (£o)一(Tu1) (£o)一0. Next we prove Moo(£)>Tu1( )Otherwise,there exist t】E[O,t。)U(zo,1],such that t E[o,1]. t E(f1,t o]or t E Et 0,t1). (4) M∞(£)一Tul(£)::=0 and Mco( )一Tu1(£)>0 We suppose tl E EO,t 0).Then for t∈( 1,t 0], M (£)一(Tu1) ( )一M (f o) 一 )一( s ds≤ 第6期 李君君:奇异Sturm—I iouville边值问题的正解 13 (5,“l(s)))ds≤0, i.e. (£)一(T“1) (f)≤0,and M0(t0)一T l( )≤M (t1)一T 1(t1)一0,a contradiction to(3),so (4)holds. Since Mco(:££)一(o)一(T )T 1)(£。o)一r()一lJ 0 G (£。0,s) ( s)Mds一.=L JfI =0 G(G ,to,s) (s),。(s, (ul(s)) : | J 0 I G( 。,s)^(s)(M— 厂 (s,“1(5))) ≤(M— a min f(£,M ( )))l G(£0,s)h(s)ds一0, ,●●J,●、  O≤f≤1 J 0 a contradiction to(3),so(2)holds.Then( 。T)u1一Tu1一“1 and 1(£)is s solution of BVP(1). Theorem 2 Suppose f(f,O)≥0,h(t),( ,O)≠0,and there is r>0 such that M 、^ 一 b= r 厂 而>o・ positive solution u 1( )satisfying Then when ≤6,BVP(1)has at least one 0<I lu II≤r. Proof Let )f(t,uu 。. …广1 一Similarly,0。T has a fixed point“1∈ ,l lI ll<r, Tu(£)一 f G(£,s) (s)厂 (s, (s))ds J 0 We claim that 0≤t≤1. (Tu1)(£)≥0 t∈Eo,1]. Otherwise,there is t o∈[O,1],such that (Tu1)(t)一min Tu1(£)一一L<0. 0≤ ≤1 If t o一0,then(Tu1) (0)≥0,according to the boundary condition,we have a(Tu1)(0)一 (O)(Tu】) (0)一0,which contradicts(H1). If t o一1,then(Tu1) (1)≤0,according to the boundary condition,we have y(Tu1)(1)+ ap(1)(Tu1) (1)一0,which contradicts(H1). So t o∈(0,1)and(Tu1) (£o)一O. Next we prove(Tu1)(£)<O,t∈[O,1]. Otherwise,there exist t1∈E0,t 0)U(£o,1]such that Tu1(f1)一0 and Tu1(£)<0 nonnegative solution of BVP(1). t∈(£l,t o]or t∈Et 0,t1). By the same way above,we can show Tu1(£)≥O,Vt∈E0,1].Then( 。T) l—Tul===u1,i.e.“l(t)is a References: [1]YAO Qingliu.A Class of Singular Sublinear Sturm—Liouville Boundary Value Problem1,J].Journal of Shandong Universi— ty:Natural Science,2009,44:36—38. [2]LI Zhilong.Solutions for a Class of Singular Semi—Positive Sturm—Liouville Boundary Value Problem EJ3.Advances in Mathematics,2010,39:64—7O. 1-33 GAUDENZI M,HABETS P,ZANOLIN F.Positive Solution of Singular oundaryB Value Problems with Indefinite Weigh I-J].Bul1.Belg.Math.Soc.,2002,9:607—619. (下转第86页) 86 吉首大学学报(自然科学版) 第35卷 Electrical Conduction of Zn2+_Doped TiP2 O7 Based Composite Ceramic CHEN Changmei 一.WANG Hongtao ~,SUN Lin ~,QIAO Rui ~, ZHAO Aixia 一.LIU ZhenⅢ (1.College of Chemistry and Chemical Engineering,Fuyang Teachers’College,Fuyang 236041, Anhui China;2.Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment,Fuyang 236041,Anhui China) Abstract:Firstly,Zn 一doped TiP2 O7一TiO2 composite ceramic(5 mol Zn抖)was prepared using zinc oxide,titanium oxide and phosphoric acid as raw materials by the traditional solid state reaction.The product was characterized by using infrared spectrometer,laser particle size analyzer.For the electro— chemica1 determinations,the conductivity was measured by an AC impedance method.IR result showed that the structure of the composite ceramic has Ti—O,P一0 bonds.From the particle size distribution it can be seen that sample of particle distribution is in a certain range of concentration.The plot of the to— tal condUCtivities of the sample in dry air atmosphere at 100 ̄300℃showed that the conductivity increa— ses with temperature,and its maximum value is 4.3×10一。S・cm一 at 300。C. Key words:pyrophosphate;composite ceramic;conductivity;electrolyte (责任编辑 向阳洁) (上接第13页) [4]GE Weigao,REN Jinli.New Existence Theoreins of Positive Solutions f0r Sturm—LiouVille Boundary Value ProblemEJ] App1.Math.Comput.,2004,148:631—644. [5]LI Pengsong,XIE Jisheng,AI Shu,et a1.The Existence of Positive Solution for Sturm—Liouville Boundary Value Problem with Strong Singularity[J].Energr Procedia,2012,17:103—111. [63 REN Jinli.Positive Solution for Three-Point Boundary Value Problems with Sign Changing Nonlinearities[J].Applied Mathematucs Letters,2004,17:451—458. [7] YAO Qingliu.An Existence Theorem of a Positive Solution to a Semipositone Sturm-Liouville oundarBy Value Problem [J].Applied Mathematucs Letters,2010,23:1 401—1 406. 奇异Sturm—Liouville边值问题的正解 季君晃 (南京财经大学应用数学学院,江苏南京210046) 摘 要:利用拓扑度理论和雏上的不动点定理,研究奇异Sturm—Liouville边值问题的正解存在性,得到了新的正解存 在性定理. 关键词:奇异;Sturm—Liouville边值问题;正解 中图分类号:O175.14;O177.91 文献标识码:A (责任编辑向阳洁) 

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baomayou.com 版权所有 赣ICP备2024042794号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务