您好,欢迎来到宝玛科技网。
搜索
您的当前位置:首页台州市中考数学试卷及答案

台州市中考数学试卷及答案

来源:宝玛科技网
2008年浙江省台州市中考数学试题

一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.3的相反数是( ) A.3

B.3

C.

1 3D.1 32.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )

A.0.41310 11B.4.1310 11 C.4.1310 10 D.41310

84.一组数据9.5,9,8.57.5) A. B. ,8,C. 的极差是(D. A.0.5 B.8.5 C.2.5 D.2 5.不等式组(第2题) x43x≤1的解集在数轴上可表示为( )

0 1 2 0 1 2 D C 6.如图,在菱形A. ABCD中,对角线AC,B. 相交于点O,E为AB的中点, BDO 且OEa,则菱形ABCD的周长为( ) A.16a B.12a C.8a D.4a 0 1 2 0 1 2 A B 7.四川5C12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的E . D. (第6题)

帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人,设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是( ) A.x4y2000

4xy9000B.x4y2000

6xy9000

C.xy2000

4x6y9000D.xy2000

6x4y90008.下列命题中,正确的是( )

①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所

对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等 A.①②③ B.③④⑤ C.①②⑤ D.②④⑤ 12 1113 9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号5 4 1014 21 为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产1 6 生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规9 15 3 2 20 律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图

8 19 16 7 形进行形象的记录).那么标号为100的微生物会出现在( )

18 17 A.第3天 B.第4天

C.第5天 D.第6天 (第9题) 10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种......

A C

B

图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程......中,两个对应三角形(如图2)的对应点所具有的性质是( ) A.对应点连线与对称轴垂直 B.对应点连线被对称轴平分 C.对应点连线被对称轴垂直平分 D.对应点连线互相平行

二、填空题(本题有6小题,每小题5分,共30分)

111.化简:(2x4y)2y .

2人数 50 45 40 40 230 12.因式分解:x4 .

20 10 13.台州市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的10 5 年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的0 15岁 16岁 17岁 18岁 年龄 年龄是16岁的概率是 . (第13题) 14.如图,从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球

运动时间t(单位:秒)的函数关系式是h9.8t4.9t,那么小球运动中的最大高度

2h最大 .

h D 边形a

A

C M

c H C G 15.如图,四y x B A ,ABCDb O E EFGH,

B N E F D (第14题) NHMC都是(第16题) (第15题)

正方形,边长分别为a,b,c;

五点在同一直线上,则c (用含有a,b的代数式表示). A,B,N,,EF16.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB弦CD于E),设AEx,

BEy,他用含x,y的式子表示图中的弦CD的长度,通过比较运动的弦CD和与之垂直

的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式 .

三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)

17.(1)计算:22tan4516 (2)解方程:

3x12 x22x18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上.

(1)画出△ABO绕点O逆时针旋转90后得到的三角形; (2)求△ABO在上述旋转过程中所扫过的面积. 19.如图,一次函数ykxb的图象与反比例函数y点,直线AB分别交x轴、y轴于D,C两点. (1)求上述反比例函数和一次函数的解析式;

B A mO 的图象交于A(31),,B(2,n)两

xy A (第18题) O D x ADC (2)求的值.

B CD20.在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在(第19题)

学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下: (1)一次函数的解析式就是一个二元一次方程 y y=k1x+b1 (2)点B的横坐标是方程①的解; (1)请你根据以上方框中的内容在下面数字序号后写出相应的结论: 一次函数与方程的关系 A C ① ;② ;③ ;④ ; x,y的值是方程组 (3)点中的(x,y)C的坐标B x O kxb≥(2)如果点C的坐标为(1,3),那么不等式②的解. k1xb1的解集是 . y=kx+b 21.如图是某宾馆大厅到二楼的楼梯设计图,已知BC6米,AB9米,中间平台宽度DE(第20题) 为2米,DM,EN为平台的两根支柱,DM,EN垂直于AB,垂足分别为M,N,(1)函数ykxb的函数值y大于0时,自变EAB30,CDF45.

一次函数与不等式的关系 量x的取值范围就是不等式③的解集; 求DM和BC的水平距离BM.(精确到0.1米,参考数据:21.41,31.73) (2)函数ykxb的函数值y小于0时,自变 C 量x的取值范围就是不等式④的解集. 22.八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家E E五个等级.长做家务的时间来评价学生在活动中的表现,把结果划分成A老,B,C,D,D F 师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.

A 学生帮父母做家务活动时间频数分布表 N M B (第21题) 帮助父母做家务时间 频数

等级

学生帮父母做家务活动评价(小时)

等级分布扇形统计图

A

E A B C D E

10

D

B C 40% (第22题)

(1)求a,b的值;

(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;

(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.

23.CD经过BCA顶点C的一条直线,CACB.E,F分别是直线CD上两点,且BECCFA.

(1)若直线CD经过BCA的内部,且E,F在射线CD上,请解决下面两个问题: ①如图1,若BCA90,90,

则BE CF;EF BEAF(填“”,“”或“”);

②如图2,若0BCA180,请添加一个关于与BCA关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.

(2)如图3,若直线CD经过BCA的外部,BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).

B

AD3324.如图,在矩形ABCD中,AB,,点9P是边BC上的动点(点P不与B B E A F 点B,点C重合),过点,交边于点,再把沿着动直线Q△PQCCDD P作直线PQ∥BDF D E E C C F ABCD重叠部分的x,△PQR与矩形PQ对折,点C的对应点是R点,设CP的长度为A C A D (图(图2) (图3) 面积为y. 1)

(第3题)

(1)求CQP的度数;

(2)当x取何值时,点R落在矩形ABCD的AB边上? (3)①求y与x之间的函数关系式;

②当x取何值时,重叠部分的面积等于矩形面积的

7? 27Q

2008C 年浙江省台州市中考数学参 D D D C C

一、选择题(本题有10小题,每小题4分,共40分)

P

题号 1 2 3 4 5 6 7 8 9 10

R A A A B B C D 答案 A B C D A B C B B (第24题) (备用图1) (备用图2)

二、填空题(本题有6小题,每小题5分,共30分) 11.x

12.(x2)(x2)

13.0.45

14.4.9米

15.a2b2 216.xy≥2xy,或(xy)≥4xy,或x2y2≥2xy,或xy≤xy等 2三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)

17.解:(1)22tan451628145 (2)

3x12, x22x去分母,得:x12(x2)

整理,得:x12x4, 解这个方程得:x3,

经检验,x3是原方程的解,所以原方程的解为x3. 18.(1)画图正确(如图). (2)△AOB所扫过的面积是:

B E D O A 90π4244π4. 360m19.解:(1)把x3,y1代入y,得:m3.

x3反比例函数的解析式为y.

x33把x2,yn代入y得n.

x23把x3,y1;x2,y分别代入

2A 3kb1E ykxb得3, 2kb2SS扇形DOBS△AOB(第18题)

y D O C B x (第19题) 1k2解得,

b1211一次函数的解析式为yx.

22(2)过点A作AEx轴于点E. A点的纵坐标为1,AE1.

由一次函数的解析式为y111, x得C点的坐标为0,2221. 2在Rt△OCD和Rt△EAD中,CODAEDRt,CDOADE, Rt△OCD∽Rt△EAD. ADAE2. CDCOOC20.解:(1)①kxb0;②(2)x≤1.

21.解:设DFx米.

C

E D F A

ykxb;③kxb0;④kxb0.

ykxb11CDF45,CFD90,

N M

(第21题)

B

CFDFx米,

BFBCCF(6x)米, ENDMBF(6x)米,

AB9米,DE2米,DFx米,

ANABMNBM(7x)米,

在△AEN中,ANE90,EAN30,

ENANtan30,

即6x3(7x). 3解这个方程得:x18734.6.

33答:支柱DM距BC的水平距离约为4.6米. 22.解:(1)a5040%20,b5021020315. (2)x0.7531.25151.75202.25102.752; 1.68(小时)

50答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时. (3)符合实际.

设中位数为m,根据题意,m的取值范围是1.5≤m2,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多. 23.

B (1)①;;

B B

②所填的条件是:BCA180.

E A F D

F D E E 证明:在△BCE中,CBEBCE180C BEC180. C F A C A D

BCA180,1BCA(图) CBEBCE(图2) . (图3)

(第23题)

又ACFBCEBCA,CBEACF. 又BCCA,BECCFA,

△BCE≌△CAF(AAS).

BECF,CEAF.

EFCFCE,EFBEAF.

(2)EFBEAF. 24.解:(1)如图,四边形ABCD是矩形,ABCD,ADBC. 又AB9,AD33,C90,

D

Q

C P

A

R B

(第24题)

CD9,BC33.

tanCDBBCCD33,CDB30. PQ∥BD,CQPCDB30.

(2)如图1,由轴对称的性质可知,△RPQ≌△CPQ,

RPQCPQ,RPCP.

由(1)知CQP30,RPQCPQ60,

RPB60,RP2BP.

CPx,PRx,PB33x.

在△RPB中,根据题意得:2(33x)x, 解这个方程得:x23.

(3)①当点R在矩形ABCD的内部或AB边上时,

0x≤23,S1132△CPQ2CPCQ2x3x2x,△RPQ≌△CPQ,当0x≤23时,y322x 当R在矩形ABCD的外部时(如图2),23x33,

在Rt△PFB中,

RPB60,

PF2BP2(33x),

RPCPx,RFRPPF3x63,

在Rt△ERF中,

EFRPFB30,ER3x6. S1△ERF2ERFR332x218x183, yS△RPQS△ERF,

D

Q

C P

A

B

(图1R )

D

Q

C A

E F B

P (图R 2)

当23x33时,y3x218x183.

32x(0x≤23)综上所述,y与x之间的函数解析式是:y2.

3x218x183(23x33)②矩形面积933273,当0x≤23时,函数y大,所以y的最大值是63,而矩形面积的32x随自变量的增大而增277的值27373, 27277而7363,所以,当0x23时,y的值不可能是矩形面积的;

27当23x33时,根据题意,得:

3x218x18373,解这个方程,得x332,因为33233,

所以x332不合题意,舍去. 所以x332.

综上所述,当x332时,△PQR与矩形ABCD重叠部分的面积等于矩形面积的

7 27

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baomayou.com 版权所有 赣ICP备2024042794号-6

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务