ofDynamicNetworks
1
FrankG.RadmacherandWolfgangThomas
RWTHAachen,LehrstuhlfürInformatik7,52056Aachen,Germany
{radmacher,thomas}@automata.rwth-aachen.de
Abstract
Amodelofdynamicnetworksisintroducedwhichincorporatesthreekindsofnetworkchanges:deletionofnodes(byfaultsorsabotage),restorationofnodes(byactionsof“repair”),andcreationofnodes(byactionsthatextendthenetwork).Theantagonismbetweentheoperationsofdeletionandrestorationresp.creationismodelledbyagamebetweenthetwoagents“Destructor”and“Constructor”.Inthisframeworkofdynamicmodel-checking,weconsiderasspecifications(“winningconditions”forConstructor)elementaryrequirementsonconnectivityofthosenetworkswhicharereachablefromsomeinitialgivennetwork.Weshowsomebasicresultsonthe(un-)decidabilityandhardnessofdynamicmodel-checkingproblems.Keywords:adaptivesystems,dynamicnetworks,dynamicgraphproblems,model-checking,gametheory.
1IntroductionandMotivation
Theclassicalmethodologyofmodel-checking(see[6])referstoafixedsystemandaspecificationofitsbehavior.Usuallythestatesandtransitionsofthesystemunderconsiderationarecollectedinatransitiongraph(Kripkestructure),andtheonlydynamicaspectisthechangeofstate(viaavailabletransitions)whichisthencap-turedbytheconceptofanexecutionpathor(ifbranchingbehaviorisconsidered)ofacomputationtree.Specificationsaredefinitionsofdesiredpropertiesofexecutionpathsorcomputationtrees.
Atheoryofmodel-checkingoverdynamicstructuresisstillverymuchinitsbe-ginnings.Somereferencesknowntousare[15,3,13]wherethedatastructureswithadynamicbehavior(likeprogramsorUMLstatemachines)areefficientlyencoded(e.g.aslistsortrees)fortheuseofwell-establishedmodel-checkingmethods.Theobjectiveofthispaperistointroduce(andproveinitialresultson)asimplebutquitegeneralmodelforstudyingnetworkswhichchangeovertime.Weconsidergraphsasmodelsofcommunicationnetworks.Suchanetworkisassumedtochangeovertime
1
ResearchwassupportedbytheRWTHAachenResearchClusterUMIC(UltraHighSpeedMobileInfor-mationandCommunication)oftheGermanExcellenceInitiative.
uvuv
Figure1.Movementofstrongnodewithrestoration.
bythedeletionandcreationofnodes.ThedifferentnetworksarisinginthiswayfromanoriginalnetworkGcanbecollectedinaKripkestructurewhoseelementsarenetworksreachablefromGbysuccessiveoperationsofnetworkmodification.Sowedealwithahierarchicalmodelinwhichthefirstlayercapturesnetworksandthesecond(representedbytheKripkestructure)thedynamicsofnetworks.Insteadofexecutionpathsweconsider“networkevolvementpaths”,andspecificationstyp-icallyareaddressingpropertiesofnetworksthatshouldholdthroughout(safetyproperties)orpropertiesthatshouldbeachieved(reachabilityconditions).Morecomplicatedspecificationsarepossible(e.g.,referringtostandardtemporallogicslikeLTL)butarenotpursuedinthepresentpaper.
Twolevelsofthedynamicshavetobedistinguished:Thefirstisconcernedonlywithinformationflowthroughanetwork,orachangeofstatesofthenodesofthenetwork.Nodesandedgesassuchstayfixed.Anaturalwaytodescribethisaspectistoassumealabelingofthenodesthatmaychangeovertime.Theclassicalmodel-checkingproblemcanbeseenasaspecialcaseofthisdynamiclabeling:WeconsidertheKripkestructureasanetworkandindicatethecurrentstateoftheKripkestructurebyaspeciallabelatthecorrespondingnode,or–inotherwords–asatokenonthisnode.Astepconsistsofashiftofthetokentoaneighbornodereachableviaatransition;thisobviouslyisaspecialcaseofre-labeling.Inthegeneralcasewehavelabelsandchangelabelssimultaneouslyinseveralnodesofthenetworkunderconsideration.Weshallcapturethisideaof“informationflow”byre-labelingrules.
Thesecondaspectofthedynamicsinvolvesachangeinthesetofnodesand/orthesetofedges.Inthepresentpaperweonlyconsiderchangesinthesetofnodes(andinducedchangesinthesetofedges).Themoregeneralcasethatariseswhenincludingedgesinthedynamicsinvolvesheaviernotationbutdoesnotaffectthegeneralresultsastheyappearinthispaper.Wedistinguishthreetypesofchanges,withan“original”networkGasareference.Wemaydeletenodes,wemayrestorenodesthathadbeeninexistencebefore,orwemaycreatecompletelynewnodes.Allthesestepsinvolvetheconceptof“strongness”ofanode:Astrongnodecannotbedeleted,anditistheprerequisiteforperformingtherestorationandcreationofnodes.Inthecontextofcommunicationnetworks,onecanviewthestrongnodesasstationswheremaintenanceresourcesarelocated.Theseresourcesmaytravelthroughedgestoexistingnodes,andtheymayatsomenodeurestoreadeletednodevbymovingtoitiftherewasanedge(u,v)inthenetworkbeforethedeletionofv(seeFig.1).
ForthecreationofanodewecanpicksomesetSofstrongnodes,createanewnodev(thatisorisnotstrong)andconnectitwitheachofthenodesinSbyatransition(seeFig.2).Thiscorrespondstotheassumptionthatcreationis“moreexpensive”thanrestoration.
Bothkindsofrulescanbeappliedeithergenerallyorsubjecttoconstraintswhichrefertothecurrentlabelingofnodes.
2
v
u1u2u3u1u2u3
Figure2.CreationofanewnodebyasetU={u1,u2,u3}ofstrongnodes.
Wemodelthenaturalantagonismbetweenthedeletionandrestorationresp.creationofnodesbyatwo-playergamebetweenthetwoagents“Destructor”(per-formingdeletionactionsanywhereinthenetwork)and“Constructor”(performingtheactionsofrestorationandcreation).NotethattheactionsofDestructoroc-curgloballyinthenetwork,whereastheactionsofConstructoroccurlocally(theyarebasedonshiftingstrongnessofnodestoneighbors).Thisasymmetrybetweendeletionandrestorationorcreationseemsadequateformodellingphenomenaoffault-tolerance:Faultsmayhappenanywhere,butactionsofrepairneedcoordi-nationofresources.Forsimplicity,weshallconsiderhereonlyturn-basedgameswhereDestructorandConstructoractinalternation(butbothhavetheoptiontoskip).AnothersimplificationistheassumptionthatConstructor’s(andDestruc-tor’s)movesaredecidedtakingintoaccountfullinformationaboutthecurrentnetwork.(Thissimplifyingassumptionistobedroppedinfuturework,usingthemechanismofinformationflow.)ThetaskofConstructoristoenforcethatproper-tiesgiveninaspecificationwillbereached(orpreserved)againstanysequenceofmovesbyDestructor.
Specificationsfordynamicnetworksaretypicallyconcernedwithguaranteeingdesirablepropertiesofnetworks.Inthepresentpaperweonlyconsidertheproper-tiesofconnectivityandbiconnectivity.(Agraphisbiconnectedifdeletionofanynodestillleadstoaconnectedgraph.)Therearemanysimilarproperties,likek-connectivity,havingasmalldiameter,havingacertainminimaldegreeforallnodes,etc.
Thedynamicmodel-checkingproblemnowtakestheformofaproblemofgamesolution,whereanetworkGandasetRofrulesforitsmodificationaregiven.WeassociatedeletionstepswithDestructorandallothermoveswithConstructor.
Forexamplewecanaskforasolutionofasafetygame,givenGandR:StartingfromG,doesConstructorhaveawinningstrategytoguaranteethatthenetworkalwaysstaysconnected?
Areachabilitygameisgivenbythefollowingproblem:
StartingfromGwhichisconnected,doesConstructorhaveawinningstrategythatwillleadtoabiconnectedgraph?
Thesearefirstexamplesofamuchwiderclassofproblemsthatarestudiedinthealgorithmictheoryofinfinitegames(see[9]).Theperspectiveofourworkistolinkthistheorytotheanalysisofdynamicnetworks.
Thepaperisstructuredasfollows.Inthenextsectionwebrieflydiscussrelatedwork.Thenwepresentourmodelinformaldetail.Afterthatwelistsomenaturalnetworkpropertiesthatarerelevantinthepresentcontextandshowsomeinitialresultsonthesolutionofdynamicmodel-checkingproblems.Notsurprisingly,it
3
turnsoutthatinthegeneralframeworkthereachabilityproblemisundecidable.Intherestrictedcaseof“non-expansive”dynamicnetworksweobtaindecidabilitybutestablishsomehardnessresults.Intheconcludingsectionweaddressperspectivesofthegametheoreticanalysisofdynamicnetworkswhicharetreatedinongoingwork.
2RelatedWork
Thegametheoreticframeworkdevelopedhereisanextensionofthetheoryof“sabotagegames”suggestedbyvanBenthem(cf.[22])anddevelopedbyPh.RohdeandC.LödingatRWTHAachen;see[17,18,16,19,20].Thenetworksinthesepapersaredirectedgraphswithpossiblymultipleedgesbetweennodes,onwhichaplayer“Runner”wantstoreachanodevfromagivenstartnodeu.AftereachmoveofRunner,theadversary,called“Blocker”,maydeleteanedge;andinthiswayRunnerandBlockermoveinalternation.ThealgorithmicproblemofsolvingthisgameasksforawinningstrategyforRunnerthatenableshimtoreachnodevagainstanychoiceofBlockerindeletingedges.Notethatthisgameinvolvesonlyre-labelings(shiftofpositionofRunner)and(edge-)deletions.Asinthegeneralgameabove,themovesofthe“good”playerarelocal(i.e.,transitionsthroughavailableedges),whereasthe“bad”player(theBlocker)canactgloballyandaccessanyexistingedgeinanymove.
AnotherinterestingapproacharisesfromthestudiesofdynamicversionsoftheDynamicLogicofPermission(DLP)whichisinturnanextensionoftheProposi-tionalDynamicLogic(PDL).InDLP,“computations”inaKripkestructurefromonestatetoanotherareconsideredwhicharesubjectto“permissions”.ThelogicDLP+dyn(see[5,8])extendsDLPwithformulaswhichallowupdatesofthepermissionsetandthuscanbeseenasadynamicallychangingKripkestructure.Nevertheless,allthedynamicshavetobespecifiedintheformula;anadversarialplayerisnotconsidered.
Previousstudiesofdynamicnetworksaddressingtheaspectofadversarialagentshavebeenconcernedwithroutingproblems.Insuchstudiesitwaseitherassumedthatthenetworkunderconsiderationstaysconnectedortheconnectivityofthenetworkisatleastgiveninfinitelyoftenovertime(cf.[6,1,2]).
Theideaofchangingnetworksisofcoursestudiedinconsiderabledepthinthetheoryofgraphgrammars,graphrewriting,andgraphtransformations(see[4,21]).Whiletheretheclassofgenerablegraphs(networks)isthefocusofstudy,wedealherewithamorerefinedviewwhenconsidering“evolvementpaths”andtheproper-tiesofgraphsoccurringinthem.Inthe“one-player”frameworkofmodel-checking,wementionthework[7]wheregraph-interpretedtemporallogicisintroducedasarule-basedspecification.ItextendsLTLbyinterpretingformulasontransitionsystemswhichnodesaregraphs.Atechniqueisdevelopedtomapthe“graphtran-sitionsystems”tofiniteKripkestructures,sothatclassicalLTL-model-checkingcanbeapplied.
Infinitemodeltheory,S.Patnaik,N.Immerman,andW.Hessedevelopedatheoryof“dynamiccomplexity”(cf.[11,10]).Forexample,thedecisionproblemDynREACHisthequestionwhether,giventwoverticesuandvandasequenceof
4
edgeinsertionsanddeletions(aswellaschangesofuandv),thereisapathfromutov.Thisproblemcorrespondstotherestrictionofourframeworktoone-playergames,whereConstructorcanaddanddeleteedgesfromnetworks.Forthisproblemtherearemotivationsindatabasetheory,buttheasymmetrybetweenDestructorandConstructor(asinsettingswherefaulttoleranceistheguidingmotivation)ismissing.
Inthetheoryoffullydynamicalgorithms,dynamicgraphsinwhichverticesandedgesareinsertedordeletedareconsidered,butthefocusofinvestigationisthecomputationalcomplexityofstaticgraphpropertieswithrespecttoagivenupdatestepresp.agivensequenceofupdatesteps(cf.[14,12]).
3
3.1
DynamicNetworksviaGames
TheBasicModel
WepresentnetworksintheformG=(V,E,A,S,(Pa)a∈Σ)with
•••••
afinitesetVofvertices(alsocallednodes),anundirectededgerelationE,asetA⊆Vof“activenodes”,asetS⊆Aof“strongnodes”,
apartitionofVintosetsPaforsomelabelalphabetΣ(AnodebelongstoPaifitcarrieslabela.FortechnicalsimplicityweincludeablanksymbolinΣ(asadefaultfor“unlabeled”nodes).
ThedynamicsofanetworkarisesfromaninitialnetworkGbythepossiblemovesfromDestructorandConstructor(Constructor’smovesaresubjectofasetofrules)whicharechangingtherespectivecurrentnetwork.AgamearenawillbepresentedasapairG=(G,R),withaninitialnetworkGasaboveandafinitesetRofrulesforConstructor.(InthisworkwewillalwayshaveA=VfortheinitialgraphG;nonodesaredeletedatthebeginningoftheplay.)
ThetwoplayersDestructorandConstructorplayturnbyturn(Destructorstarts).Inourmodeltheplayersareallowedtoskipaswell.Playsareinfiniteingeneral,butmaybeconsideredfiniteinthecaseswhereneitheroftheplayerscanmove,oragivenwinningconditionissatisfied.
Letusdescribetherulesthatdefinethemoves.WhenitisDestructor’sturn,hecandoadeletionstepbydeletingsomenodev∈(A\\S);AischangedtoA\\{v}.
WhenitisConstructor’sturn,shecanmakeinaccordancewithhisrulesetRamoveofoneofthefollowingtypes:
Labelingrule:a,b−→c,dmeanstochangethelabelsaandboftwoedge-connectednodesofAintocandd,respectively.Inthecaseof“pureinformationflow”wehaveb,c=anda=d.Formally,forapair(u,v)∈Ewithu∈Paandv∈PbthesetsPa,Pb,Pc,andPdareupdatedtoPa\\{u},Pb\\{v},Pc∪{u},andPd∪{v}.
Forlabelingruleswewillalsoconsiderruleswithmultiplere-labelingsinoneturn.Thiscorrespondstoourintuitionthattherecanbealotofinformation
5
flowinthenetworkatthesametime.Forexamplefortwolabelingrulesinoneturnweusethenotationa,b−→c,d;e,f−→g,h.Therulesareappliedoneaftertheotherbutinthesameturn.
Moveofstrongnoderesp.restorationofnode:Foranarbitraryu∈Swithanedge(u,v)∈Eandanodev∈S,updateSto(S\\{u})∪{v}andAtoA∪{v}.Incasev∈Athismeanstosimplyshiftstrongnesstov;incasev∈V\\Athismeansrestorationofv.Theabilityofastrongnodetomovemaybesubjectto
move
acertainlabeling(a,b)ofthepair(u,v).WeusetheNotationa−−−→b.Creationofnode:TakeanysetU⊆Sofstrongnodes,createanewnodewandconnectittothenodesofU.Formally,thesetsVandAareupdatedtoV∪{w},resp.A∪{w},andalsoEisupdatedbyaddingedgesbetweenwandeachnodeofU.Thecreationmaybesubjecttothenodelabelsa1,...,an(n=|U|)ofthenodesinU.AlsothelabelsofthenodesinUmaychangeaftercreation(to
a−−−−→a1,...,an).Weusethenotationa1,...,an−1,...,an,whenthenew
create−−→anodewislabeledwithc.Bysimplywritinga1,...,an−1,...,anwe
assumewgetsthelabel.Forthecreationofastrongnodeweusethenotationa1,...,an−−−−−−→a1,...,an.InthiscasealsoSisupdatedtoS∪{w}.Note
thatthesemovesaretheonlyonesthatchangeVandE.Thenewnodewiscreatedonlyonce;itcanhenceforthonlybedeletedandrestored.
s-create(c)
create(c)
ForagamearenaasgivenhereandanetworkpropertyP,wedistinguishtwotypesofgamesreferringtoP:
•
SafetyGamewithrespecttoP:DoesConstructorhaveawinningstrategytopreserve,startingfromGandproceedingbytherulesofR,thepropertyPforallnetworksreachedinaplay?
ReachabilityGamewithrespecttoP:DoesConstructorhaveawinningstrategytoguarantee,startingfromGandproceedingbytherulesofR,thatsomenetworkwithpropertyPisreached?
•
TheDynamicModel-CheckingProblem(inthesafety,respectivelyreachabilityformat)consistsofthequestion,givenGandRandnetworkpropertyP,whetherConstructorhasawinningstrategyinthesafetygame,respectivelyreachabilitygameforP.
Moregenerally,onecanintroduce,referringtonetworkpropertiesP1,...Pn,thetemporallogicLTLoverP1,...,Pnandaskforwinningstrategiesthatguar-anteesatisfactionofanLTL-formulaforaninfiniteplaybetweenDestructorandConstructor.
Example3.1ConsiderthegamearenaG=(G,R)withlabels⊥,inΣ.TheinitialgamegraphG=(V,E,A,S,(Pa)a∈Σ)withthesetS={s1,s2,u1,w1}ofstrongnodesisdepictedinFig.3.
ConsiderasrulesRonlymovesofstrongnodes(ifapplicablewithrestoration)
move
labeledwithablank:−−−→.Thestrongnodess1ands2arenotabletomove,becausetheirlabeldoesnotmatchthemoverule.Asascenarioforthisgamearenawecouldimaginetwoclientss1,s2whichcommunicateoveranetworkwithunreliableintermediatenodesbuttwomobilemaintenanceressources.
6
u3
u2
v1
w1
s2⊥
⊥s1
u1
v2
w2
w3
Figure3.Anexampleinitialgamegraph(boldnodesarestrong).
Weconsiderasafetygamewithconnectivityofs1ands2aspropertyP.So,weareinterestedinthequestionwhetherConstructorcanalwaysguaranteethatthereisapathfroms1tos2inthenetwork.IfwetakeacloserlookatthisexampleweseethatDestructorhasawinningstrategy.Hecandeletew3inhisfirstmove.Thenwedistinguishbetweentwocases:IfConstructorrestoresw3thenDestructordeletesv1inhisnextmoveandfinallyu1orv2.IfConstructordoesnotmovetheuppermovablestrongnodetow3thisnodehastoremainatw1,otherwiseConstructorlosesbydeletionofw1.InthiscaseitiseasytoseethatDestructorwinsbyasuitabledeletionofnodesin{u1,u2,v1,v2}.
Nowweconsiderthesamegame,butadditionallywiththerule,−−−→,.WeclaimthatnowConstructorhasawinningstrategy.IfDestructordeletesthevertexv1orv2Constructorcreatesanewvertexv3withthecreationrulewhichestablishesanewconnectionbetweenthetwostrongnodesu1andw1.IfDestructordeletesthenewvertexv3Constructorcreatesanewvertexagain,andsoon.NotethatinthiswaythesetVofverticesofthegraphcanincreasetoanunboundednumber.
Evenintheseverysmallexamplestheexactformalizationofthewinningstrate-giesisquitecomplex.So,thisexampleshouldalreadysufficeasamotivationforformalmodel-checkingmethods.3.2
RemarksonSpecialCasesandVariants
create
Themodelintroducedaboveisquitegeneral,andmanyspecialcasesandvariantscanbestudied.Weonlymentionthreeofthem.
(i)ClassicalModel-Checking:AsmentionedintheIntroduction,theclassical
model-checkingproblemforLTLcanbecapturedasaspecialcaseofthedy-namicmodel-checkingproblem(intheframeworkofLTL).Inthiscase,thegraphisdirectedandthepropertiesP1,...,Pnrefertopointedgraphs(G,v)(soPimaybeconsideredasavertexratherthanagraph).Destructorstayssilent–sowehaveasolitairegame–,andConstructorrealizesthechangeofthe“currentstate”byshiftingatokenthroughthegivengraph(usingonlyre-labelingrules).(ii)SolitaireGames:Inthiscase,onlyConstructormovesandkeepscontrolof
theevolvementofnetworks.Deletionandhencerestorationmovesarenotadmitted,andthemovesthatremainareeitherthecreationorthere-labelingofnodes.Avariantsuggestedbythesolitairemodelisthesituationwhere
7
Constructoralsocarriesoutthedeletionmoves.Thiscorrespondstoasituationwheretheevolvementofastructure(here:anetwork)iscontrolledcompletelybyoneagent.
(iii)Non-expansiveGames:ForpropergamesbetweenDestructorandConstructor,
wecanconsiderthespecialcasethatConstructordoesnotusecreationmoves.Thenwecalltherulesnon-expanding.ThissituationcorrespondstoanetworkevolvementwheretheoriginalsetVofnodesisneverextended.Obviously,thesetofnetworksreachablefromagiveninitialgraph–i.e.,theKripkestructurebuiltfromG–isfiniteinthiscase.Asaconsequence,the“non-expandingdynamicmodel-checkingproblem”(inthesafety-,reachability-,orevenLTL-format)isdecidable.Belowweshowthatdroppingtheconditionofnon-expansioncausesundecidability.Therearemanymorevariantsthatmighthavegoodmotivationsfromdifferentapplications.Anaturalvariantistoconsiderdeletionandinsertionofedgesratherthannodes(orevenofboth,nodesandedges).Thiswouldrequirecorrespondingconventionsregardingtherulesandtheirreferencetolabels.Notethatthesabotagegameswerebasedontheideaofedgedeletion.Forthegeneralresultsshowninthispaper,thisaspectisnotessential;sowedonotpursueit.However,itwillplayamajorroleforrefinedstudies,e.g.concerninginformationflow.
ApossiblecriticismaboutourframeworkmaybetheradicaldifferencebetweenDestructorandConstructor,whichputstheformerintoanadvantage.Thiscanberemediedbynaturalconventions,forexamplebytheassumptionthatDestructorkeepssilent(i.e.,skips)forcertainperiodsoftimeuntiladeletioniscarriedout.ItdependsontherespectiveareaofapplicationhowabalancebetweenConstructorandDestructorshouldbetuned.Inthecontextoffaulttolerance(whichisthemotivationofourwork),itisnaturaltoassumethatthatthedeletionactionsofDestructorareundesirableandthecreationandrestortationactionsofConstruc-toraredesirable.Inotherdomains,theconverseisconceivable.Thepurposeofthepresentpaperistoexhibitaframeworkwheresuchmodificationareeasytoincorporate.
4BasicResultsonDynamicModel-Checking
Letuslistsomebasicnetworkpropertiesthatarisenaturallyinourframework.WerefertotherestrictionofnetworksinthesimpleformatG=(V,E)ofplainundirectedgraphs.Asapreliminaryremarkwementionthatinmostpracticalapplicationsthedegreeofnetworksshouldbeboundedbyaconstantd(meaningthateachnodeisconnectedtoatmostdneighbors).
AgraphG=(V,E)isconnectedifforeachu,v∈Vthereisapathfromutov.Itisbiconnected(resp.k-connectedfork>2)ifforeachnodev(resp.foreachk−1-tuple(v1,...,vk−1)ofnodes)theinducedgraphoverV\\{v}(resp.V\\{v1,...,vk−1})isconnected.AgraphG=(V,E)isofdiameterdifforeachpairu,v∈Vthereisapathfromutovoflength≤d.
Inourfirstresultweshowthatthedynamicmodel-checkingproblemeveninthesolitaireversion(whereDestructoralwaysdecidestoskip)withrespecttoconnec-8
tivitypropertiesisundecidable.Theessentialfeatureoftheundecidabilityproofistheavailabilityofcreationmoves.
Theorem4.1Thedynamicmodel-checkingforsolitairegamesinreachabilityfor-matisundecidableinthefollowingversion:GivenaconnectednetworkGandafinitesetRofrulesforConstructor,isthereastrategyforConstructortoreachabiconnectednetwork?
ProofWeuseareductiontothehaltingproblemforTuringmachines.WepresentTuringmachinesintheformat
M=(Q,Γ,δ,q0,qstop)
withastatesetQ,tapealphabetΓ(weassumeQ∩Γ=∅),transitionfunctionδ:Q\\{qstop}×Γ→Q×Γ×{L,R},initialstateq0,andstopstateqstop.
ForeachsuchTuringmachineMweconstructasolitairegame(i.e.aninitialconnectednetworkGandasetRofrules)suchthatMhaltswhenstartedontheemptytapeiffConstructorcanreachabiconnectednetworkfromGbyapplyingtherulesofR.
TheideaoftheconstructionistorepresentaTuringmachineconfiguration[a1...anqb1...bm](here,[and]areleftandrightmarker,respectively)byase-quenceofn+m+3nodeslabeledwiththesesymbolsinsuccession.ThelabelalphabetthuscontainsthetapealphabetofM,thestatesofM,andtheendmark-ers.Forlateruseweallowalsotheletters[s,]s,p+foreachstatep∈Q,andasforeachletteraofthetapealphabet.
Asinitialgraphwetakethethreenodegraphwithnodeslabeled[,q0,].Wedefinethesethreenodesasstrong.
Itiseasytosupplyasetofre-labelingruleswhichallowtochangethislinegraphonlyinawaythatthecomputationofMstartingwiththeemptytapeissimulated.Formally,foreachpair(q,a,p,b,X)withδ(q,a)=(p,b,X)weaddthegamerulesq,a−→p+,bandy,p+−→p,yifX=L,andq,a−→b,pifX=R(here,ydenotesanarbitrarylabelofΓ∪{}).
Forthecasethatmorespaceisneeded(beyondthecurrentendmarkers),weintroducecreationstepssubjecttolabelings,makingtheendmarkernodesstrongagain:[−−−−−−→and]−−−−−−→.
Finally,weallowspecialre-labelingrulesthatcanbeappliedwhenthefinalstateqstopisreached.Theextraindex“s”isnowpropagatedthroughtheexistinglinegraphtotherightandtotheleft,usingtheextralettersmentionedabove.Giventwostrongnodeswithlabels[s,]s,weallowtocreateanewnodewconnectedwithbothofthem,thusgeneratingacirclegraph(whichofcourseisbiconnected).2Theresultalsoholdsforthetwo-playergame.Sinceinoursimulationwehavedefinedallnodesasstrong,thepresenceofadestructiveplayerdoesnotchangetheplaysofthegame.
Notethattheproofreliesontheavailabilityofcreationmoves;ifthesearecancelled,theproblembecomestriviallydecidable:
9
s-create([)
s-create(])
Remark4.2Thedynamicmodel-checkingprobleminthereachabilityandthesafetyversionisdecidablefornon-expandingnetworks.
Fortheproofitsufficestoobservethatfromtheinitialnetworkonlyfinitelymanydistinctnetworks(overtheunchangedoriginalvertexsetV)canbegenerated.IfthereareNsuchnetworks,eachplaywillyieldarepetitionafteratmostNsteps.Hence,fordecidingthewinner(andprovidingawinningstrategy)itsufficestobuildupthegametreeuptodepthN.
Remark4.3Inordertokeepthemodelsimplewedonotconsiderscenarioswheredeletionandinsertionofedgesareallowed.Sincethenumberofpossibleedgesinthe|V|
non-expansivecaseisboundedby2,theabsenceofedgeinsertionanddeletionisinsignificantforthedecidabilityofthemodel-checkingproblem.
Inthefollowingwewillshowthatsolvabilityofnon-expansivegames(i.e.,with-outcreationrules)isPSPACE-hard.Weuseareductiontothesolutionofsabotagegamesasmentionedintheintroduction.LödingandRohdeshowedthatthesabo-tagegameproblemiscompleteforthePSPACE[17,18,20].Letusrecallthepreciseformulation.
AsabotagegameGs=(Gs,vin)isplayedonagamegraphGs=(V,E)whichchangesovertime;alsoadesignatedsetF⊆Visgiven.Thetwoplayers,calledRunnerandBlocker,playasfollows:Runnerstartstheplayinavertexvinandmovestoanodevwith(vin,v)∈E.ThenplayerBlockererasesanedge(w,w)∈EresultinginagraphG.RunnercontinuestheplayonG,andsooninalternation.RunnerwinsiffshecancanreachavertexinthegivensetF⊆Voffinalvertices.
LödingandRohdeintroducedsabotagegameswithmulti-graphs(withpossiblymultipleedges),butshowedthatsingle-graphssuffice(seeLemma1in[18]).Theorem4.4Inthenon-expansivecase,thedynamicmodel-checkingprobleminthereachabilityversionisPSPACE-hard.
ProofConsiderasabotagegameGs=(Gs,vin)ontheinitialgamegraphGs=(Vs,Es)andasetF⊆Vsoffinalvertices.WeconstructagamearenaG=(G,R)withnodelabels‘vertex’,‘edge’,‘run’,‘acc’,‘reach’inthealphabetΣwiththepurposethatConstructorcanreachanetworkinGcontainingalabel‘reach’iffRunnerwinsthesabotagegameGs.
TheideaistosimulatetheRunnerbylabelingrulesoftheformrun,∗−→∗,run.Wesimulateedgeremovalbynoderemovalasfollows:WemaketheverticesoftheoriginalinitialgraphGsunerasablebymakingthemtounmovablestrongnodes.ThenweaddonevertexforeachedgeinES.InsteadofdeletingedgesDestructormaydeletethesenewvertices.InordertoallowConstructorto“move”therunlabelfromoneunerasablevertextoanother,shemaketwore-labelingstepsinoneturn.
Figure4showstheinitialgraphGsofanexamplesabotagegameandtheequiv-alentinitialgamegraphGofourgame.
TheinitialgamegraphisG=(V,E,A,S,(Pa)a∈Σ)withV:=Vs∪Es,andEarisesfromEsasinthefigure.AdditionallyletPvertex:=Vs\\({vin}∪F),Pedge:=Es,Prun:={vin},Pacc:=F,Preach:=∅,andS:=Vs.
10
acc
edge
run
edge
vertex
edge
acc
Figure4.InitialgraphGsofasabotagegameandcorrespondinginitialgraphGofthereachabilitygame.
InordertosimulatethemovementofRunnerthesetRcontainstherulesrun,edge−→vertex,run;run,vertex−→edge,runandrun,edge−→vertex,run;run,acc−→edge,reach.TheserulesallowConstructortopropagatethe‘run’labelfromone‘vertex’-labelednodetoanotherbypassingonenon-deleted‘edge’-labelednode.Ifthe‘run’-labelreachesthe‘acc’-labelitisre-labeledto‘reach’.Notethattherearenomovementresp.restorationrulesinR,sothatallstrongnodes(notlabeledwith‘edge’)areconsideredunerasable.
InthisproofweassumeConstructorstartsthegame(alikeRunnerstartsthesabotagegame).(Thiscouldbeeasilyachievedbyconnectingthe‘run’-nodetoone‘acc’-nodewithanadditional‘edge’-labelednode.So,Destructordeletesthisextra‘edge’-labelednodeinhisfirstturn.)
ThedeletionofthenodesinEsresp.thepropagationofthe‘run’-labelfromonnodeinVstoanothercorrespondstotheedge-deletionresp.tothemovementofRunnerinthesabotagegame.Hence,Constructorcanreachanetworkcontainingalabel‘reach’inGiffRunnerwinsthesabotagegameGs.2Notethatwedonothaveanymovementresp.restorationstepsintheproof,sotheproblemremainsPSPACE-hardforrestrictingourgamesbyprohibitingthoserules.
Onemighthavetheimpressionthatthehighcomplexityforthecasewithoutnodecreationisonlyduetoconsiderationofinformationflowresp.labelingrules.Butevenwithouttheserules,simplequestionslikeconnectivitycausecomputationalproblems.WepresentacorrespondingPSPACE-hardnessresultinThm.4.6belowusingareductiontosabotagegamesagain.Forreaderswhopreferareductiontoastandardproblem,weincludealsoaNP-hardnessproof(invokingthevertexcoverproblem).
Theorem4.5Inthenon-expansivecasewithoutconsiderationofinformationflow,thedynamicmodel-checkingproblemwithrespecttoconnectivityinthesafetyversionisNP-hard.
ProofWereducethevertexcoverproblemwhichiswell-knowntobeNP-hardtothequestionwhetherConstructorcanguaranteeconnectivityofthenetworkinthesafetygame.
Westatethevertexcoverprobleminthefollowingform:GivenagraphGVC=(V,E)andanintegerk,isthereavertexcoverofthesizekorlessforGVC?
WeconstructagamearenaG=(G,R)withlabels‘vertex’,‘edge’,‘keeper’,
11
t1
edge
t2
edge
edgeedge
vertexvertexvertexvertexvertex
keeperstoragestorage
rs1s2
Figure5.AnordinarygraphGVCandcorrespondinginitialgraphGofthesafetygamefortestingGVCforavertexcoverofsize2.
‘storage’,inΣ.TheideaistoadaptGVCfortheinitialgraphofGbyaddinganunmovablestrongnodeforeachedge.WekeeptheoriginalnodesofGVCaserasablenodes.Theseerasableverticesareconnectedwitha“storage”ofkmovablestrongnodess1,...,sk.Theerasableverticesarealsoconnectedwithanunmovablestrongnoderwhichkeepstheverticesconnected.So,inaplayDestructorcanonlytrytoisolatethe‘edge’-labelednodesbydeletingthe‘vertex’-labelednodes.ConstructorcanonlypreserveconnectivityofGbymovingthekstrongnodesofthestoragetotheverticeswhichareavertexcoverforGVC.
Additionally,knodeslabeledwithareconnectedwiththe‘edge’-labelednodestopreventDestructorfromwinningbeforeConstructorcanmovethenodesofthestoragetothevertexcover.Destructorcandeletethese-nodeswithinkturnsandthereisnowayforConstructortorestorethem.
ForexampleinthegraphinFig.5(ontheleft)thereexistsavertexcoverofsize2,sotwostrongstoragenodes(andtwoadditionalnodeslabeledwith)arenecessaryforConstructortopreservetheconnectivity(intheright-handgraph).
Formally,theinitialgamegraphisG=(V,E,A,(Pa)a∈Σ,S)withV:=V∪E∪{r,s1,...,sk,t1,...,tk},andEarisesfromEasinthefigure.AdditionallyletPvertex:=VPedge:=E,Pkeeper:={r},Pstorage:={s1,...,sk},P:={t1,...,tk},andS:=E∪{r,s1,...,sk}.
Inordertoallowmovementofthestrongstoragenodestothenodeslabeled
move
with‘vertex’weaddarulestorage−−−→vertextoR.NotethatthisistheonlyruleinR,sothattheotherstrongnodes(notlabeledwith‘storage’)areunmovable.
Clearly,ifforGVCavertexcoverofsizekexists,playerConstructorwinsbymovingkstrongnodestothevertexcover.
FortheotherdirectionnoticethatitisbestforConstructortomovenodestotheerasablenodeslabeledwith‘vertex’.Sinceonlythekstrongstoragenodesaremovable,ConstructorcanonlykeepthepersistenceofknodesofVGofherchoice.IfConstructorwins,thesenodesareavertexcoverofsizekforGVC.2Asannounced,wenowsharpenthisresulttoPSPACE-hardness,usingareduc-tiontothesolutionofsabotagegames(whichisPSPACE-complete[17,18,20]).WeshowthattheproblemisPSPACE-hardeveninthecaseweomitthedistinctionofnodelabels(i.e.,allnodesarelabeledwith).
12
···vtargetK|Vs|······Figure6.InitialgraphGsofasabotagegameandcorrespondinginitialgraphGofthesafetygamewithrespecttoconnectivity.
Theorem4.6Inthenon-expansivecasewithoutconsiderationofinformationflowandwithoutdistinctionofnodelabels,thedynamicmodel-checkingproblemwithrespecttoconnectivityinthesafetyversionisPSPACE-hard.
ProofConsiderasabotagegameGs=(Gs,vin)ontheinitialgamegraphGs=(Vs,Es)withasetF⊆Vsoffinalvertices.WeconstructagamearenaG=(G,R)whereallverticesarelabeledwith,sothatConstructorcanpreservetheconnectivityofthegraphinGiffRunnerwinsthesabotagegameGs.
TheideaistosimulatethemovementofplayerRunnerbythemovementofastrongnode.Intuitively,Constructorshouldbeabletomoveastrongnodetoa“final”vertexinGiffRunnerreachesthisfinalvertexofFinthegameGs.Then,ConstructorcanpreventDestructorfromdestroyingtheconnectivityiffConstructorcanmoveastrongnodetoa“final”vertex.WewillensurethelatterbyconnectingthefinalverticeswithacompletegraphK|Vs|of|Vs|nodes.EachfinalvertexisconnectedwithallnodesofK|Vs|,andeachnodeofK|Vs|isconnectedwithanadditionalnodecalledvtarget.DestructorcanisolatevtargetbydeletingthecompletesubgraphK|Vs|iffConstructorcannotmoveastrongnodetowardsa“final”vertextoK|Vs|.FortherestofthearenaConstructorcanalwaysguaranteeconnectivityinG,butwiththehandicapthatastrongnodecanbemovedtoafinalvertexiffRunnerwinsinGs.
Inordertorealizetheconstruction,weshallreplacetheedgesofGsbyso-calledgateswhichwedepictbyaboldsquare;anexampleforthesimulationisdepictedinFig.6whichshowstheinitialgraphGsofanexamplesabotagegameandtheequivalentinitialgamegraphGofourgame.
ThereplacementgateforanedgebetweentwonodesuandvisdepictedinFig.7.Allgatesinthegraphsharethesameverticesz1andz2.EachnodeofthecompletesubgraphK|Vs|describedaboveisconnectedtoz1aswell.Thus,allverticesotherthanvtargetstayconnectedifConstructoralwaysskips.Thestrongnodez1isunmovable,otherwiseDestructorisolatesz2bydeletionofz1.ThemovementofRunnerfromutovissimulatedbythesituationthatConstructorcanmovethestrongnodeatwtovwithoutgivingDestructortheopportunitytoisolateoneofthenodesxi.ThereforeConstructorneedsastrongnodeatuwhichshecanmovetowardswinthecasethatDestructordeletesayi.Conversely,ifuisnotstrongandDestructordeletesoneofthenodesyi,Constructorcannotmovethestrongnodeatwtovanymore(eveninthecasethatubecomesstronglater),becauseDestructorcouldsubsequentlyisolatexibydeletionofw.Thexi-nodesandyi-nodesexist
13
uvux1
wx2
v
y1z1
y2
z2
Figure7.Anedgebetweennodesuandvinthesabotagegameanditsreplacementgate.
twicetopreventConstructorof“securing”thegatebymovingthestrongnodeatwtoaxinode.(IfConstructormovesthestrongnessofwtoonexi-node,Destructorcanachievetheisolationoftheotherone.)
Formally,weconstructtheinitialgamegraphG=(V,E,A,S,(P))withV:=Vs∪Es∪{w,x1,x2,y1,y2}×Es∪{z1,z2}∪V(K|Vs|)∪{vtarget},andEarisesfromEsasinthefigures.AdditionallyletP:=V,andS:={vin,z1}∪{w}×Es.WithV(K|Vs|)wedenotetheverticesofthecompletesubgraphK|Vs|,andvtargetisthenodewhichDestructortriestoisolate.ThevertexvtargetisonlyconnectedtothenodesinK|Vs|,andeachnodeofK|Vs|isadditionallyconnectedtoeach“final”
move
vertexandtothevertexz1.TheonlyruleinthesetRis−−−→whichallowsarbitrarymovementofstrongness(toweaknodes).
InthisproofweassumeConstructorstartsthegame(alikeRunnerstartsthesabotagegame).(ThiscouldbeeasilyachievedbyconnectingthestrongnodeinGwhichcorrespondstotheinitialnodeinGswithoneofthe“final”nodesbyanadditionalgate.So,Destructordeletesayi-nodeofthisgateinhisfirstturn.)
Assume,RunnerhasawinningstrategyinGs.ForeachturnwhereRunnermovesfromanodeutoanodevinGs,Constructormovesthestrongnessofwtovinthecorrespondingreplacementgatefortheedge(u,v)inG.IfDestructordeletesoneofthenodesy1,y2,orwinthisgatelateron,Constructorreactsbysecuringthisgatebymovingthestrongnessofutow(otherwisethismoveisnotnecessary).SinceRunnerreachesafinalstateinGswithin|Vs|−1turns,ConstructorcanmovethestrongnesstoaassociatednodeinGbeforeDestructorcandelete|Vs|−1verticesofK|Vs|.ConstructorcanfinallymovethisstrongnodetoanodeofK|Vs|,henceshewinsinG.
Conversely,assumethatBlockerhasawinningstrategyinGs.Foreachdeletionofanedge(u,v)inGs,Destructordeletesayi-nodeoftheassociatedgate.InthecasethatConstructormovesthestrongnessofaw-nodetoav-nodewithouthavingtherequiredstrongnessattheassociatedu-node,Destructorreactsbydeletingayi-nodeofthisgate(andsuccessivelythew-nodeifConstructordoesnotmoveback).Analogously,ifConstructormovesstrongnessofaw-nodetoaxi-nodeDestructortriestoisolatetheotherxi-node.AndinthecasethatConstructormovesthestrongnessofz1,Destructorwinsbydeletingz1.SinceRunnerlosesthesabotagegame,Constructorcannotmoveastrongnodetowardsa“final”nodetothecompletesubgraphK|Vs|withoutlosingthegame.Afterblockingthereplacement
14
gatesaccordingtoBlocker’sstrategyinGs,DestructorcandeleteallverticesofK|Vs|.InthiscasevtargetbecomesisolatedandDestructorwins,too.
Hence,ConstructorcanpreservetheconnectivityinGiffRunnerwinsthesab-otagegameGs.2Inthepresentpaperwedonotsettlethequestion,whethertheconsiderednon-expansivecasesofthemodel-checkingproblemareactuallysolvableinPSPACE.
5Perspectives
WehavepresentedinthispaperaveryflexiblemodelofdynamicnetworksbasedontheparadigmofagamebetweenthetwoplayersDestructorandConstructor.Weshowedsomepreliminaryresultsonthestatusofthedynamicmodel-checkingproblemassociatedwiththisgame.
Ourcurrentworkaddressesvariousrestrictionsoftheframework.Itisobviousthatinterestingalgorithmicsolutionscanonlybeobtainedinmoreconstrainedscenarios.
However,thisdoesnotapplytothespecifications.Inpracticeitmayberele-vanttoguaranteeabehaviorofdynamicalnetworkswhichtranscendstherangeofreachabilityorsafetyproperties.Alreadytheuseofthe“until”operatormaybein-teresting;itallowstoexpressreachabilitypropertiesunderanadditionalconstraint(whetheracertainpropertyisreachedanduntilthenanotherconstraintismet).
Anotherleadingaspectisthatyes/noquestionsasstudiedinthispaper(i.e.,whetheradynamicmodel-checkingspecificationissatisfiedornot)hastoberefined.Fromapracticalpointofviewtheformulationofoptimizationproblemsismoreuseful.Asanexampleconsideranetworkingridform,sayatwo-dimensionaln×narrayofnodes.Intheassociatedsafetygamewithoutlabelingconstraintstheconnectivityistobepreserved.Thequestionishowmanystrongnodesarerequiredtoensurethis.ItisclearthatDestructorwinsifaroundsomenodevallnodesofdistance<6(includingvitself)failtobestrong:Inthiscase,Destructorcansuccessivelydeletetheatmostfourneighborsofvandthusisolatevfromtherestofthenetwork,destroyingconnectivity.Todeterminethepreciseminimalnumberofstrongnodesnecessarytoensureconnectivityisanoptimizationissueextendingthequestionwhetheragivennetwork(withagivensetofstrongnodes)allowstosatisfyasafetyspecification.
References
[1]Awerbuch,B.,P.Berenbrink,A.BrinkmannandC.Scheideler,Simpleroutingstrategiesforadversarialsystems,in:ProceedingsofFOCS(2001),pp.158–167.[2]Awerbuch,B.,A.BrinkmannandC.Scheideler,Anycastinginadversarialsystems:Routingandadmissioncontrol,in:ProceedingsofICALP,LectureNotesinComputerScience2719(2003),pp.1153–1168.[3]Bouajjani,A.,P.Habermehl,A.RogalewiczandT.Vojnar,Abstractregulartreemodelcheckingofcomplexdynamicdatastructures,in:ProceedingsofSAS,LectureNotesinComputerScience4134(2006),pp.52–70.[4]Corradini,A.,GETGRATS:Asummaryofscientificresults(withannotatedbibliography),ElectronicNotesinTheoreticalComputerScience51(2001).
15
[5]Demri,S.,AreductionfromDLPtoPDL,JournalofLogicandComputation15(2005),pp.767–785.[6]EdmundM.Clarke,J.,O.GrumbergandD.A.Peled,“Modelchecking,”MITPress,Cambridge,MA,USA,1999.[7]Gadducci,F.,R.HeckelandM.Koch,Afullyabstractmodelforgraph-interpretedtemporallogic,in:ProceedingsofTAGT,LectureNotesinComputerScience17(1998),pp.310–322.[8]Göller,S.,Onthecomplexityofreasoningaboutdynamicpolicies,in:ProceedingsofCSL,LectureNotesinComputerScience46(2007),pp.358–373.[9]Grädel,E.,W.ThomasandT.Wilke,“Automata,Logics,andInfiniteGames,”LectureNotesinComputerScience2500,Springer,2002.[10]Hesse,W.,ThedynamiccomplexityoftransitiveclosureisinDynTC0,TheoreticalComputerScience
3(2003),pp.473–485.[11]Hesse,W.andN.Immerman,Completeproblemsfordynamiccomplexityclasses,in:Proceedingsof
LICS(2002),pp.313–322.[12]Holm,J.,K.deLichtenbergandM.Thorup,Poly-logarithmicdeterministicfully-dynamicalgorithms
forconnectivity,minimumspanningtree,2-edge,andbiconnectivity,JournaloftheACM48(2001),pp.723–760.[13]Jussila,T.,J.Dubrovin,T.Junttila,T.LatvalaandI.Porres,Modelcheckingdynamicandhierarchical
UMLstatemachines,in:ProceedingsofMoDeV2a(2006),pp.94–110,http://modeva.itee.uq.edu.au.[14]King,V.andG.Sagert,Afullydynamicalgorithmformaintainingthetransitiveclosure,Journalof
ComputerandSystemSciences65(2002),pp.150–167.[15]Lerda,F.andW.Visser,Addressingdynamicissuesofprogrammodelchecking,in:Proceedingsof
SPIN,LectureNotesinComputerScience2057(2001),pp.80–102.[16]Löding,C.andP.Rohde,Modelcheckingandsatisfiabilityforsabotagemodallogic,in:Proceedingsof
FSTTCS,LectureNotesinComputerScience2914(2003),pp.302–313.[17]Löding,C.andP.Rohde,SolvingthesabotagegameisPSPACE-hard,TechnicalReportAIB-05-2003,
RWTHAachen(2003).[18]Löding,C.andP.Rohde,SolvingthesabotagegameisPSPACE-hard,in:ProceedingsofMFCS,Lecture
NotesinComputerScience2747(2003),pp.531–540.[19]Rohde,P.,Movinginacrumblingnetwork:Thebalancedcase,in:ProceedingsofCSL,LectureNotes
inComputerScience3210(2004),pp.310–324.[20]Rohde,P.,“OnGamesandLogicsoverDynamicallyChangingStructures,”Ph.D.thesis,RWTHAachen
(2005).[21]Rozenberg,G.,editor,“HandbookofGraphGrammarsandComputingbyGraphTransformations,
Volume1:Foundations,”WorldScientific,1997.[22]vanBenthem,J.,Anessayonsabotageandobstruction,in:D.HutterandW.Stephan,editors,
MechanizingMathematicalReasoning,EssaysinHonorofJörgH.SiekmannontheOccasionofHis60thBirthday,LectureNotesinComputerScience2605(2005),pp.268–276.
16
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- baomayou.com 版权所有 赣ICP备2024042794号-6
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务