由已知:a2²=a1•a5(1/2 + d)²=(1/2)•(1/2 + 4d)1/4 + d + d²=1/4 + 2dd² - d=0d(d - 1)=0∵d≠0∴d=1则an=1/2 + (n-1)•1=n - 1/2
等差数列{an},S5=70 所以,5a3=70 即,a3=14 a2,a7,a22成等比数列 即,a7²=a2×a22 即,(14+4d)²=(14-d)(14+19d)化简得,35d²-140d=0 即,d²-4d=0 因为,d≠0 所以,d=4 a1=a3-2d=14-8=6 an=6+4(n-1)=4n+2 所以,数列{an}的通项公...
解:(1)∵{an}是等差数列,a1=3,公差为d,∴a4=3+3d,a13=3+12d,∵a1、a4、a13成等比数列,∴(3+3d)2=3(3+12d),整理得d2-2d=0,∵差d≠0,∴d=2,∴an=3+(n-1)×2=2n+1,Sn=n(3+2n+1)2=n(n+2).(2)∵Sn-3an=n(n+2)-3(2n+1)=n2-4n-3=(...
1、(a1+d)/a1=(a1+4d)/(a1+d)解得d=0或1 由题得d=1 an=n-1/2 2、Sn=1/2n²代入Sn=50,得n=10
设an的公差是d ∴a3=a1+2d,a9=a1+8d a2=a1+d,a4=a1+3d,a10=a1+9d ∴a1+a3+a9=3a1+10d,a2+a4+a10=3a1+13d ∵a1,a3,a9依次成等比数列 ∴a3/a1=a9/a3 ∴a1^2+4d^2+4a1d=a1^2+8a1d ∴a1=d ∴(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13d/16d=13/16 ...
A2=A1+d A4=A1+3d 因为A2是A1与A4的等比中项,所以 (A1+d)(A1+d)=A1(A1+3d)A1*A1+2*A1*d+d*d=A1*A1+3*A1*d 所以A1=d 所以An=nd 因为a1,a3,a(k2),a(k3),……a(kn),……成等比数列 而A1=d A3=3d 所以A(k2)=9d A(k3)=27d ……A(kn)=3^nd 所以kn=3^n ...
因为{an}为等差数列,所以有a1+a3=2a2.a3=a1+2d 由韦达定理可以得到a1+a2=a3;a1a2=a4;于是有a1+(a1+a3)/2=a3,解得a3=3a1,而a3=a1+2d,于是有a1=d,a2=2d,a3=3d,a4=4d.那么a1a2=2d^2=a4=4d,因为d不等于0,所以有d=2;于是有an=2n.
设公差为d 则a3=a1+2d=1+2d,a13=a1+12d=1+12d 则有a3:a1=a13:a3,即 (1+2d)²= 1+12d 解有d=2(d≠0)则{an} ={1,3,5,7...(2n-1)} Sn = n²(2Sn+16)/(an+3)= (2n²+16)/(2n+2)=(n²+8)/(n+1)可以看出,n越大,表达式最大,所以n=...
证明:直线P1PN的斜率 k=(sn/n-s1)/(n-1)=[(a1+an)/2-a1]/(n-1)=(an-a1)2(n-1)=(n-1)d/2(n-1)=d/2 为一定值 所以点Pn(n,Sn/n)(n∈N)在同一条直线上
(Ⅰ)∵S3=a5S3=a22,∴3(a1+d)=a1+4d3(a1+d)=a22,整理得:2a1=d3a2=a22,∵a5=a22,d≠0,∴a2≠0,∴